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We resuscitated the mixed-frequency vector autoregression
(MF-VAR) developed in Schorfheide and Song (2015) to gener-
ate macroeconomic forecasts for the United States during the
COVID-19 pandemic in real time. The model combines 11 time
series observed at two frequencies: quarterly and monthly. We
deliberately did not modify the model specification in view
of the COVID-19 outbreak, except for the exclusion of cri-
sis observations from the estimation sample. We compare the
MF-VAR forecasts to the median forecast from the Survey of
Professional Forecasters (SPF). While the MF-VAR performed
poorly during 2020:Q2, subsequent forecasts were at par with
the SPF forecasts. We show that excluding a few months of
extreme observations is a promising way of handling VAR
estimation going forward, as an alternative of a sophisticated
modeling of outliers.
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1. Introduction

Vector autoregressions (VARs) are widely used in empirical macro-
economics. A VAR is a multivariate time-series model that can be
used to forecast individual time series, to predict co-movements of
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macroeconomic or financial variables, to analyze sources of busi-
ness cycle fluctuations, or to assess the effects of monetary or fiscal
policy interventions on the macro economy. The recent COVID-19
pandemic triggered long-lasting mobility restrictions in the form of
stay-at-home orders across the United States and the world in 2020
and beyond. As a consequence, economic activity collapsed in many
sectors and unemployment soared. The unprecedented decline of eco-
nomic activity created a tremendous challenge for macroeconomic
modeling and forecasting, including the use of VARs and related
state-space models.

In response to this challenge we resuscitated the mixed-
frequency VAR, henceforth MF-VAR, developed in Schorfheide
and Song (2015). MF-VARs have been shown to be competitive
with other forecasting approaches, including surveys of professional
forecasters, by, for instance, Schorfheide and Song (2015), Brave,
Butters, and Justiniano (2019), and McCracken, Owyang, and
Sekhposyan (2020). They are preferable, in particular at shorter fore-
cast horizons, to single-frequency VARs that use time-aggregated
data. Rather than modifying the MF-VAR in real time or ex post to
accommodate idiosyncrasies of the economic downturn triggered by
the COVID-19 pandemic, we decided to leave the model unchanged,
except for the consideration of several forms of excluding or discount-
ing extreme observations during the estimation stage. We summa-
rized a first set of real-time forecasts in the working paper version
Schorfheide and Song (2020) and subsequently published monthly
real-time forecasts at www.donghosong.com from April 30, 2020
until August 31, 2021.

The contribution of the current paper is to evaluate the 17
months of real-time MF-VAR forecasts and compare them to median
forecasts from the Survey of Professional Forecasters (SPF) con-
ducted by the Federal Reserve Bank of Philadelphia.1 The paper
focuses on the effect of outliers in the context of an MF-VAR,
rather than on the advantages of a modeling strategy that mixes
time series sampled at various frequencies. State-space models are
more flexible in handling outliers than models in which all variables
are treated as observed, such as standard VARs. We contrast two

1See https://www.philadelphiafed.org/surveys-and-data.
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approaches of capturing outliers: inflating the scale of the measure-
ment errors to capture observation outliers, and inflating the scale of
the state-transition innovations to capture innovation outliers. The
first approach downweights extreme observations without propagat-
ing them through the system. Lagged values of extreme observations
are effectively replaced by forecasts from the state-transition equa-
tion. The second approach downweights the likelihood increment
associated with extreme observations, but uses them as lagged val-
ues to predict subsequent “normal” observations. We use the first
approach for parameter estimation and the second approach to gen-
erate forecasts conditional on parameter draws from the posterior
distribution. Letting the scale tend to infinity is equivalent to drop-
ping observations from the system.

Instead of modeling the occurrence of outliers through a fat-
tailed distribution or a mixture distribution, we simply scale the
innovation variances or drop observations based on an inspection of
the data prior to the MF-VAR estimation. This approach is conve-
nient and practical in situations in which observations are so extreme
that they are easily recognizable as outliers, such as the COVID-19
pandemic. Our approach is also easy to implement on other model
classes and less demanding in terms of time and human resources
than the explicit modeling of outliers.

The SPF is a widely used benchmark in forecast comparisons.
From our perspective, the SPF has two important features: first, as
our MF-VAR forecasts, the SPF forecasts were made in real time
as the pandemic was unfolding and they are not based on ex post
model optimization. Second, the professional forecasters had the
opportunity to make real-time judgmental adjustments to model-
based forecasts in view of the evolving pandemic which cannot be
reproduced in pseudo-out-of-sample forecast comparisons with other
model classes. Our sample is too short for a formal comparison of
forecasts to be informative. Numerical evaluation statistics are likely
to be dominated by a few large forecast errors. Instead, we focus
on visual comparisons of ex post realizations and forecast paths
generated at different origins.

We draw three main conclusions from our analysis. First, dur-
ing the first three months of the pandemic in the United States, in
2020:Q2, we deliberately did not exert any effort in adapting our
MF-VAR to the idiosyncrasies of the pandemic, except for ending
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the estimation sample on January 31, 2020, nor did we make judg-
mental adjustments to the model-based forecasts. We find that the
MF-VAR forecasts are substantially worse than the SPF forecasts
during this period. In April 2020 the data for the MF-VAR esti-
mation did not yet contain information about the severity of the
downturn and the model did not anticipate the magnitude of the
recession. By June 2020, the model had identified large shocks to
the economy. Propagating these large shocks through a very per-
sistent VAR law of motion led to an overly pessimistic forecast. In
short, the model performed poorly in 2020:Q2.

Second, without any modifications or adjustments the MF-VAR
model generated remarkably accurate forecasts from July 2020
onward. These forecasts are at par with the median SPF forecasts.
Many pundits initially expected the pandemic to be relatively short-
lived and the recession to be followed by a strong recovery once the
mobility restrictions were lifted. From this perspective, the cards
were stacked ex ante against the MF-VAR, which is estimated based
on macroeconomic time series that exhibit unit-root behavior and
thereby implies that shocks tend to have long-lived effects. Ex post
it turned out that mobility restrictions could only be lifted gradually
and that the economic effects of the pandemic were long-lasting, just
as the effects of previous recessionary shocks had been long-lasting
and recoveries have often been slow.

Third, going forward, an important question for users of VARs is
how to handle the extreme data points observed in the second quar-
ter of 2020. One option is to increase the complexity of the VAR
model by explicitly allowing for outliers, either specifically during
the COVID-19 pandemic or in every period with some small prob-
ability. Our findings suggest that the alternative and rather sim-
ple approach of excluding observations from the first few months
of the pandemic works remarkably well and provides an attractive
alternative in situations in which a more sophisticated modeling of
outliers is impractical. Our approach ensures that the MF-VAR per-
forms as well after the initial downturn as it did prior to the pan-
demic. The real-time forecasts published at www.donghosong.com
were generated by ending the estimation sample on January 31,
2020. As time has progressed, it has become desirable to start includ-
ing new observations in the estimation sample. Based on our find-
ings, we recommend dropping observations from March to June
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2020 but including the subsequent data points when estimating
a VAR.

Since the beginning of the pandemic, many papers have been
written contemporaneously on how to adjust forecast models to cope
with the unprecedented economic downturn. The two papers most
closely related to our work are Lenza and Primiceri (2022), hence-
forth LP, and Carriero et al. (2022), henceforth CCMM. Just as in
our paper, CCMM and LP propose adjustments to a baseline VAR
specification. While our baseline model features mixed-frequency
observations, LP use a homoskedastic VAR as a starting point, and
CCMM start from a VAR with stochastic volatility (SV).

LP propose to deterministically scale the innovation covariance
for the duration of the pandemic to capture the increased shock
sizes. Specifically, the authors recommend estimating separate scale
factors for the first months of the pandemic and then letting the
last of these scale factors decay geometrically at an estimated rate.
To the extent that the estimated scale factors are large, the method
has a similar effect on the parameter estimates as dropping obser-
vations. However, rather than abruptly including new observations
after a certain period, the method gradually increases the weight of
these observations.

While VARs with SV are designed to adapt to time-varying
volatility and have shown to improve density and interval forecasts
(see, for instance, Clark 2011), the estimated volatility processes are
typically highly persistent. This implies that large COVID-19 shocks
over two to three months would raise SV for multiple years to lev-
els that are ex ante implausible and ex post counterfactual. As a
remedy, CCMM modify the SV specification to allow for Student-t
distributed (instead of Gaussian) innovations as well as outliers that
do not trigger a persistent increase in volatility. The authors show
that the outlier-augmented SV-t specification substantially improves
the forecast performance of a standard VAR with SV.

Our approach of essentially dropping observation after a casual
inspection of the data and CCMM’s approach of explicit outlier
modeling can be viewed as the two endpoints of a continuum of
empirical strategies. LP’s approach of inflating the error variance at
a pre-specified point in time and then estimating a decay rate lies in
between the two endpoints. While the CCMM approach can handle
outliers in an automated way and potentially adapt to future outliers
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caused by non-COVID-related economic disruptions, our approach
provides a low-tech alternative in situations in which a more sophis-
ticated modeling is impractical. We adapt the Lenza and Primiceri
(2022) approach to our mixed-frequency framework. We find in our
application that, compared to our approach of excluding observa-
tions, the LP approach creates similar point forecasts but ex post
unreasonably large predictive intervals because the estimated scale
factor implies a relatively slow decay.

Alvarez and Odendahl (2021) use an outlier modeling approach
similar to CCMM, but with the feature that the reduced-form errors
rather than the structural errors are stochastically rescaled, so that
the contemporaneous correlation of the reduced-form errors is pre-
served. Antolin-Diaz, Drechsel, and Petrella (2021) and Bobeica and
Hartwig (2022) use fat-tailed error distributions to discount extreme
observations—the former in the context of a dynamic factor model
(DFM) and the latter in a VAR. Foroni, Marcellino, and Stevanovic
(2020) explore COVID-19 adjustments of econometric model fore-
casts that are based on the forecasting experience during the Great
Recession. Either the forecast model is exclusively estimated based
on observations surrounding the Great Recession (similarity-based
estimation) or its forecasts are corrected by forecast errors made
during the Great Recession (intercept correction).

We are not alone in exploring the behavior of a time-series mod-
els during the pandemic without explicitly modeling outliers or
tailoring the model specification to the COVID observations. For
instance, Diebold (2020) studies the performance of the Aruoba-
Diebold-Scotti (ADS) economic activity index, which is based on a
low-dimensional dynamic factor model and has been published by
the Federal Reserve Bank of Philadelphia for more than a decade.
Lewis, Mertens, and Stock (2020) developed a weekly economic index
(WEI) to track the rapid economic developments triggered by the
coronavirus pandemic. Their principal component analysis, which
uses observations from 2008 onward, does not treat the observations
from the second quarter of 2020 as outliers.

Ng (2021) uses COVID indicators, such as the number of cur-
rent documented infections, and the number of hospitalizations and
deaths, either as exogenous controls or as endogenous variables in
VARs regressions to “de-COVID” the data so that economic fac-
tors and shocks can be identified, or as additional predictors to



Forthcoming MF-VAR Forecasting During a Pandemic 7

account for the persistent nature of COVID. Because the COVID
indicators are zero before the pandemic, their behavior is very
non-Gaussian. Davis and Ng (2022) develop methods for the esti-
mation of multivariate models with heavy-tailed and thin-tailed
variables, using independent component analysis to identify
disaster/pandemic shocks. While all of the previous approaches treat
the pandemic as large unobserved shocks that propagate through
the dynamic system, Primiceri and Tambalotti (2020) adapt a VAR
to the COVID-19 pandemic by assuming that also the propagation
(persistence and co-movements) of the COVID shocks is potentially
different from typical business cycle shocks. While their approach is
useful for scenario analysis, it is difficult to accurately estimate the
COVID shock propagation mechanism in real time.

There is another strand of literature that has a slightly different
objective, namely to introduce non-linearities into time-series models
such as VARs or DFMs. A side benefit, though not the key model-
ing motivation, is that these models, without further adjustments,
may be more robust to the occurrence of outliers than linear mod-
els. Huber et al. (2022) develop Bayesian econometric methods for
posterior parametric mixed-frequency VARs using additive regres-
sion trees. Goulet Coulombe, Marcellino, and Stevanovic (2021)
document that some ML methods capture non-linearities that can
improve forecasts during the COVID-19 crisis. However, it is impor-
tant to note that the same adjustments that we, LP, and CCMM
make to a linear VAR could be made to the non-linear time-series
models.2

The remainder of this paper is organized as follows. In Section 2
we provide an example that illustrates how outliers can be handled in
a state-space model by robustifying either the measurement equation
or the state-transition equation. Section 3 reviews the specification
of the MF-VAR and discusses how we drop observations from the
estimation sample and implement the LP approach of scaling the

2This includes growth-at-risk models building on Adrian, Boyarchenko, and
Giannone (2019). While the assessment of tail risk is particularly important at
the onset of the COVID-19 pandemic, during the pandemic and in its aftermath
the same question remains: does including the pandemic observations distort the
recursive estimates of these models?
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innovation covariance matrix. The real-time data set is discussed
in Section 4 and the empirical results are presented in Section 5.
Finally, Section 6 concludes. Additional information about the con-
struction of our data set is provided in the appendix. Real-time
forecasts from April 30, 2020 to August 31, 2021, were published
and remain available at www.donghosong.com.

2. Outliers in State-Space Models—An Example

In order to examine the effect of outliers on filtering and parameter
estimation in state-space models, consider the following example:

(ME) : yτ = sτ + uτ , uτ ∼ N(0, χu,τ )

(ST ) : sτ = θτ−1sτ−1 + ετ , ετ ∼ N(0, χε,τ ), τ = 1, 2, . . . , T.
(1)

The observables yτ , the latent states sτ , and the unknown para-
meters θτ ∈ Θ are scalars. We assume that there is a pandemic in
period τ = t and that the sample ends one period later in period
τ = t + 1 = T . In normal times

χu,τ = 1, χε,τ = 1, θτ = θ

and the observations are generated from (1). During the pandemic
period t, nature replaces the innovations (ut, εt) with the values
(ũt, ε̃t) to determine (yt, st). Moreover, nature sets θt = θ̃ to gen-
erate (yt+1, st+1) from (1). Following the taxonomy in Gandhi and
Mili (2010), we refer to ũt as observation outlier, ε̃t as innovation
outlier, and θ̃t as structural outlier.

The econometrician uses (1) to make inference about the latent
state sτ , the parameter θ, and forecast yτ . She considers robustifying
the econometric model to the presence of outliers by inflating the
scale of the error distributions in period t. Rather than considering
fat-tailed distributions, this is done by simply switching the values
of the constants χu,t and χε,t from one to a large value. We refer to
an increase of χu,τ as robustifying the measurement equation (ME).
Similarly, an increase of χε,t is regarded as robustifying the state-
transition (ST) equation. We compare the effect of both approaches
on filtering and parameter estimation. If we set χu,τ = 0, then the
model reduces to an AR(1).



Forthcoming MF-VAR Forecasting During a Pandemic 9

Let χτ = [χu,τ , χε,τ ]′. Suppose that the Kalman filter
(KF) delivers the time t − 1 state distribution st−1|Y1;t−1 ∼
N(st−1|t−1, Pt−1|t−1). The predictive distribution for the time t

observation is yt|Y1:t−1 ∼ N
(
yt|t−1, Ft|t−1(χt)

)
, where

yt|t−1 = θst−1|t−1, Ft|t−1(χt) = θ2Pt−1|t−1 + χε,t + χu,t. (2)

Define

λ(P, χ, θ) =
(

θ2P + χε

θ2P + χε + χu

)
. (3)

The updating step yields st|Y1:t ∼ N
(
st|t(χt), Pt|t(χt)

)
, where

st|t(χt) = λ(Pt−1|t−1, χt, θ)yt +
[
1 − λ(Pt−1|t−1, χt, θ)

]
θst−1|t−1

Pt|t(χt) = λ(Pt−1|t−1, χt, θ)χu,t. (4)

Thus, the filtered state in period t is a linear combination of yt and
the forecast θst−1|t−1, obtained by iterating ST one period forward.
The weight λ(·) in (3) is a function of χt. Iterating the KF one more
period forward, we obtain the following mean and variance for the
predictive distribution of yt+1:

yt+1|t(χt) = θst|t(χt), Ft+1|t(χt) = θ2Pt|t(χt) + 2. (5)

The updating step yields the moments

st+1|t+1(χt) = λ
(
Pt|t(χt), 1, θ

)
yt+1 +

[
1 − λ

(
Pt|t(χt), 1, θ

)]
θst|t(χt)

Pt+1|t+1(χt) = λ
(
Pt|t(χt), 1, θ

)
. (6)

Letting χu,t or χε,t tend to infinity can be viewed as an extreme
way of robustifying the filtering, likelihood evaluation, and forecast-
ing in the presence of the period t outliers. Maintaining that χτ = 1
for τ �= t, define the log-likelihood function as
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Table 1. Limits of KF Moments

Robust ME Robust ST
Moment χu,t → ∞, χε,t = 1 χu,t = 1, χε,t → ∞

yt|t−1 θst−1|t−1 θst−1|t−1
Ft|t−1(χt) ∞ ∞
st|t(χt) θst−1|t−1 yt

Pt|t(χt) θ2Pt−1|t−1 + 1 1

yt+1|t(χt) θ2st−1|t−1 θyt

Ft+1|t(χt) θ4Pt−1|t−1 + θ2 + 2 θ2 + 2

st+1|t+1(χt)
(

θ4Pt−1|t−1+θ2+1
θ4Pt−1|t−1+θ2+2

)
yt+1

(
θ2+1
θ2+2

)
yt+1 +

(
1

θ2+2

)
θyt

+
(

1
θ4Pt−1|t−1+θ2+2

)
θ2st−1|t−1

Pt+1|t+1(χt)
θ4Pt−1|t−1+θ2+1
θ4Pt−1|t−1+θ2+2

θ2+1
θ2+2

ln p(Y1:T |θ, χt)

= −T

2
ln(2π) − 1

2

T∑
τ=1

[
ln |Fτ |τ−1(χt)| +

(yτ − yτ |τ−1(χt))2

Fτ |τ−1(χt)

]
,

(7)

with the understanding that yτ |τ−1(χt) and Fτ |τ−1(χt) do not vary
with χt for τ < t.

Table 1 summarizes the χu,t −→ ∞ (robust ME) and χε,t −→ ∞
(robust ST) limits of the KF moments for periods t and t + 1. The
time t limits of the forecasts are identical. In both cases yt|t−1 =
θst−1|t−1 and Ft|t−1 = ∞, which implies that the log-likelihood
increment for the outlier observation yt drops out. While the time
t likelihood increment diverges, the limit of any log-likelihood ratio
ln p(Y1:T |θ, χt)−ln p(Y1:T |θ̃, χt) remains well defined. The robust ME
and ST limits start to differ with the time t updating step. Notice
from (3) that

lim
χu,t−→∞

λ(P, χt, θ) = 0, lim
χu,t−→∞

λ(P, χt, θ)χu,t = θ2P + χε,t,

lim
χε,t−→∞

λ(P, χt, θ) = 1.
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Under robust ME the time t filtered state is solely based on the
forward iteration of the ST, θst−1|t−1. In turn, neither the time t
forecast of yt+1 nor the filtered value of st+1 is affected by the out-
lier yt. Under robust ST, on the other hand, yt+1|t and st+1|t+1
are functions of the extreme observation yt instead of the forward
iteration θst−1|t−1.

In the empirical part of this paper we conduct Bayesian inference,
which is based on the posterior distribution

p(θ|Y1:T , χt) ∝ p(Y1:T |θ, χt)p(θ), (8)

where ∝ denotes proportionality and p(θ) is the prior. In large sam-
ples the log-likelihood function is approximately quadratic around
the maximum likelihood estimator (MLE)

θ̂(χt) = argmaxθ∈Θ ln p(Y1:T |θ, χt).

Denoting V̂ (χt) the negative inverse Hessian of the log-likelihood
function evaluated at the posterior mode, we can approximate the
posterior as

p(θ|Y1:T , χt) ∝ (2π)−1/2|V̂ (χt)|−1/2

× exp

{
−

(
θ − θ̂(χt)

)2

2V̂ (χt)
+ small

}
p(θ). (9)

We proceed by examining the sensitivity of the MLE to yt as a
function of χt. Recall that T = t + 1 and let Y(−t) = (Y1:t−1, yt+1).
Then define

�(θ, yt; Y(−t), χt) = ln p(Y1:T |θ, χt)

and its first- and second-order derivatives �θ(θ, yt; ·), �y(θ, yt; ·),
�yθ(θ, yt; ·), �θθ(θ, yt; ·). Assuming that the MLE lies in the inte-
rior, it satisfies the first-order condition �θ(θ̂, yt; Y(−t), χt) = 0. We
deduce from the implicit function theorem that

∂θ̂

∂yt
= −

[
�θθ(θ̂, yt; Y(−t), χt)

]−1
�θy(θ̂, yt; Y(−t), χt). (10)
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We show in the appendix that

lim
χu,t−→∞

�yθ(θ̂, yt; Y(−t), χt) = 0

lim
χε,t−→∞

�yθ(θ̂, yt; Y(−t), χt) = − θ̂yt

θ̂2 + 2
+

yt+1 − θ̂yt

θ̂2 + 2

(
1 − 2

θ̂2

θ̂2 + 2

)
.

The observation yt affects inference about θ in two ways. First,
the model needs to explain the observation yt based on t − 1 infor-
mation. Second, θ affects the error that the model makes predicting
yt+1 based on information that includes the observation yt. If we let
χu,t −→ ∞, then the influence of yt on θ̂ is eliminated because the
increment ln p(yt|Y1:t−1, θ, χt) is removed from the likelihood func-
tion. Moreover, as can be seen from Table 1, the forecast of yt+1 also
no longer depends on yt. It is well known in the state-space model
literature that the χu,t −→ ∞ limit corresponds to dropping time
t observation from the measurement equation using the selection
matrix (here just 1 × 1):

yτ = Mτ (sτ + uτ ), Mτ =
{

1 for τ �= t
∅ otherwise.

On the other hand, if we let χε,t −→ ∞, then yt continues to
affect the estimator θ̂ because it is used in the prediction of yt+1.
If after the pandemic, in period t + 1, yt+1 is determined in the
same way as before the pandemic, i.e., θ̃t = θ, then a large value of
yt is very beneficial, because it generates, correctly, a lot of infor-
mation about θ. If on the other hand, post-pandemic dynamics are
somewhat different from pre-pandemic dynamics, i.e., θ̃t �= θ, then
the information generated by yt will distort inference about θ and
forecasts for future periods.

In view of these considerations, we adopted the following strat-
egy to generate the baseline real-time forecasts: we estimate θ using
a Gibbs sampler with a simulation smoother that is based on the
previously described Kalman filter algorithm. We set Mτ = ∅ during
part of the pandemic, which removes the influence of the extreme
pandemic observations on the parameter estimation. This generates
posterior draws θi, i = 1, . . . , N . When generating out-of-sample
forecasts, in the notation of the example, we bring back observation
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yt to forecast yt+1. For each posterior draw i, we use the filter to
compute draws from st+1|(Y1:t, θ

i, χu,t = 1, χε,t = 1). The VAR-
based forecasts of Carriero et al. (2022) and Lenza and Primiceri
(2022) can be interpreted as setting χu,τ = 0 for all τ and χε,t equal
to a large estimated value. Primiceri and Tambalotti (2020) try to
estimate θ̃t.

3. MF-VAR Specification and Estimation

We consider an MF-VAR that utilizes monthly and quarterly obser-
vations. The MF-VAR can be conveniently represented as a state-
space model, in which the state-transition equations are given
by a VAR at monthly frequency and the measurement equations
relate the observed series to the underlying, potentially unobserved,
monthly variables that are stacked in the state vector. To cope
with the high dimensionality of the parameter space, the MF-VAR
is equipped with a Minnesota prior and estimated using Bayesian
methods. In Section 3.1 we reproduce the model description and
estimation strategy from Schorfheide and Song (2015), referring the
reader to our original paper for a detailed discussion of the Bayesian
computations. In Section 3.2 we discuss two modifications that we
consider in the empirical application: (i) dropping of observations
and (ii) a break in volatility as in LP.

3.1 Baseline Version

Model Specification. We assume that the economy evolves at
monthly frequency according to the following VAR(p) dynamics:

xt = Φ1xt−1 + . . . + Φpxt−p + Φc + ut, ut ∼ iidN
(
0, Σ

)
. (11)

The n × 1 vector of macroeconomic variables xt can be composed
into xt = [x′

m,t, x
′
q,t]

′, where the nm × 1 vector xm,t collects vari-
ables that are observed at monthly frequency, e.g., the consumer
price index and the unemployment rate, and the nq × 1 vector xq,t

comprises the unobserved monthly variables that are published only
at quarterly frequency, e.g., GDP. Define zt = [x′

t, . . . , x
′
t−p+1]

′ and
Φ = [Φ1, . . . ,Φp, Φc]′. Write the VAR in (11) in companion form as

zt = F1(Φ)zt−1 + Fc(Φ) + vt, vt ∼ iidN
(
0, Ω(Σ)

)
, (12)
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where the first n rows of F1(Φ), Fc(Φ), and vt are defined to repro-
duce (11) and the remaining rows are defined to deliver the identities
xq,t−l = xq,t−l for l = 1, . . . , p − 1. The n × n upper-left submatrix
of Ω equals Σ and all other elements are zero. Equation (12) is the
state-transition equation of the MF-VAR.

We proceed by describing the measurement equation. To han-
dle the unobserved variables, we vary the dimension of the vector
of observables as a function of time t (e.g., Durbin and Koopman
2001). Let T denote the forecast origin and let Tb ≤ T be the last
period that corresponds to the last month of the quarter for which
all quarterly observations are available. The subscript b stands for
balanced sample. Up until period Tb the vector of monthly series
xm,t is observed every month. We denote the actual observations by
ym,t and write

ym,t = xm,t, t = 1, . . . , Tb. (13)

Assuming that the underlying monthly VAR has at least three lags,
that is, p ≥ 3, we express the three-month average of xq,t as

ỹq,t =
1
3
(xq,t + xq,t−1 + xq,t−2) = Λqzzt. (14)

For variables measured in logs, e.g., lnGDP , the formula can be
interpreted as a log-linear approximation to an arithmetic average
of GDP that preserves the linear structure of the state-space model.
For flow variables such as GDP, we adopt the national income and
product accounts (NIPA) convention and annualize high-frequency
flows. As a consequence, quarterly flows are the average and not the
sum of monthly flows. This three-month average, however, is only
observed for every third month, which is why we use a tilde super-
script. Let Mq,t be a selection matrix that equals the identity matrix
if t corresponds to the last month of a quarter and is empty other-
wise. Adopting the convention that the dimension of the vector yq,t

is nq in periods in which quarterly averages are observed and empty
otherwise, we write

yq,t = Mq,tỹq,t = Mq,tΛqzzt, t = 1, . . . , Tb. (15)

For periods t = Tb + 1, . . . , T no additional observations of the
quarterly time series are available. Thus, for these periods the dimen-
sion of yq,t is zero and the selection matrix Mq,t in (15) is empty.
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However, the forecaster might observe additional monthly variables.
Let ym,t denote the subset of monthly variables for which period t
observations are reported by the statistical agency after period T ,
and let Mm,t be a deterministic sequence of selection matrices such
that (13) can be extended to

ym,t = Mm,txm,t, t = Tb + 1, . . . , T. (16)

Notice that the dimension of the vector ym,t is potentially time vary-
ing and less than nm. The measurement equations (13) to (16) can
be written more compactly as

yt = MtΛzzt, t = 1, . . . , T. (17)

Here, Mt is a sequence of selection matrices that selects the time t
variables that have been observed by period T and are part of the
forecaster’s information set. In sum, the state-space representation
of the MF-VAR is given by (12) and (17).

Bayesian Estimation. The starting point of Bayesian infer-
ence for the MF-VAR is a joint distribution of observables Y1:T ,
latent states Z0:T , and parameters (Φ, Σ), conditional on a pre-
sample Y−p+1:0 to initialize lags. The distribution of observables and
latent states conditional on the parameters is implied by the above
state-space representation of the MF-VAR. For the marginal distri-
bution of the parameters (Φ, Σ) we use a conjugate Minnesota prior.
This prior dates back to Litterman (1980) and Doan, Litterman, and
Sims (1984). We use the version of the Minnesota prior described
in Del Negro and Schorfheide (2011)’s handbook chapter, which in
turn is based on Sims and Zha (1998). The main idea of the Min-
nesota prior is to center the distribution of Φ at a value that implies
a random-walk behavior for each of the components of xt in (11).
We implement the Minnesota prior by mixing artificial (or dummy)
observations into the estimation sample. The artificial observations
are computationally convenient and allow us to generate plausi-
ble a priori correlations between VAR parameters. The variance of
the prior distribution is controlled by a low-dimensional vector of
hyperparameters λ.

We generate draws from the posterior distributions of (Φ, Σ)|Z0:T
and Z0:T |(Φ, Σ) using a Gibbs sampler. Based on these draws, we
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are able to simulate future trajectories of yt to characterize the pre-
dictive distribution associated with the MF-VAR and to calculate
point, interval, and density forecasts.

3.2 Modifications

Robustifying Estimation and Forecasting. As discussed in
Section 2, we distinguish between the handling of outliers at the
estimation stage and when we run the filter to infer the latent states
at the forecast origin, conditional on parameter draws from the pos-
terior distribution. Let T denote the forecast origin. For the estima-
tion, we will consider three approaches. Approaches E1 and E2 were
labeled as robustifying ME in Section 2.

• E1: Estimation with observations from t = 1, . . . , t∗, where
t∗ < T is a pre-pandemic period. In the notation of Section 2
we will set the measurement error variance to infinity, i.e.,
χu,t = ∞, for t > t∗, which is equivalent to setting the selec-
tion matrix Mt = ∅ in (17); or simply ending the estimation
sample in period t = t∗.

• E2: Rather than ending the estimation sample at the onset
of the pandemic, we drop a sequence of extreme observations
during the early phase of the pandemic and retain subsequent
observations from t = t∗∗ + 1, . . . , T . This is implemented by
setting Mt = ∅ for t = t∗ + 1, . . . , t∗∗.

• E3: Finally, we consider an estimation based on the full sam-
ple t = 1, . . . , T that includes the extreme observations during
the early part of the pandemic.

To determine the latent states at the forecast origin T condi-
tional on a draw (Φi, Σi) from the posterior distribution, we consider
three different filtering strategies. In each case the filter is run from
t = 1, . . . , T , but we potentially use Mt (equivalently χu,t) or χε,t to
robustify the filter against outliers.

• F1: We keep χu,t = χε,t = 1 and leave Mt unchanged.
• F2: Set Mt = ∅ for t > t∗. This means that the latent state

estimates for period t = t∗ + 1, . . . , T are generated by simu-
lating ST forward.
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• F3: From period t∗ onward, increase the innovation variance
by setting χε,t to a large value.

The baseline forecasts reported in Section 5 are generated by
combining estimation E1 with filtering F1. The determination of t∗
is discussed in Section 4.3 below.

Volatility Breaks and Discounting. LP propose allowing for
a break in volatility, which is modeled through a variable st that
scales up the residual covariance matrix during the period of the
pandemic. Following their specification, we replace (11) with

xt = Φ1xt−1 + . . . + Φpxt−p + Φc + stut, ut ∼ iidN
(
0, Σ

)
. (18)

It is assumed that st = 1 before time period t = t∗ in which the
pandemic begins. Subsequently st evolves according to

st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2, and

st∗+j = 1 + (s̄2 − 1)ρj−2. (19)

The quadruplet ϑ = (s̄2
0, s̄

2
1, s̄

2
2, ρ) needs to be estimated. This flexible

parameterization allows for this scaling factor to take three (possi-
bly) different values in the first three periods after the outbreak of
the disease, and to decay at rate ρ after that. Note that ϑ uniquely
determines the sequence S1:T = {s1, . . . , sT }.3

4. Real-Time Data

We generated and published the forecasts presented in Section 5 in
real time as the pandemic unfolded.4 Section 4.1 summarizes the
monthly and quarterly series used for the MF-VAR and the tim-
ing convention for the estimates and forecasts. The timing of the
real-time SPF forecasts is described in Section 4.2.

3One can easily modify the specification to allow for more or fewer exceptional
periods.

4Diebold (2020) distinguishes between “pseudo-real-time” analysis, meaning
the use of expanding sample estimation and vintage data, and “real-time” analy-
sis, meaning the use of real-time information rather than hindsight. We did the
latter.
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4.1 Monthly and Quarterly Time Series

We consider an MF-VAR for 11 macroeconomic variables, of which
3 are observed at quarterly frequency and 8 are observed at
monthly frequency. The quarterly series are GDP, fixed invest-
ment (INVFIX), and government expenditures (GOV). The monthly
series are the unemployment rate (UNR), hours worked (HRS), con-
sumer price index (CPI), industrial production index (IP), personal
consumption expenditures (PCE), federal funds rate (FF), 10-year
Treasury-bond yield (TB), and S&P 500 index (SP500). Precise data
definitions are provided in the appendix. Series that are observed at
a higher than monthly frequency are time aggregated to monthly
frequency. The variables enter the MF-VAR in log levels with the
exception of UNR, FF, and TB, which are divided by 100 to make
them commensurable in scale to the other log-transformed variables.

Our forecasts are based on real-time data sets, assuming that the
econometric analysis is conducted on the last day of each month.5

The timing convention and the data availability for each forecast ori-
gin are summarized in Table 2. A forecaster on April 30 has access
to monthly observations from March; an initial release of Q1 GDP,
investment, and government spending; as well as the April obser-
vations for the average federal funds rate, the Treasury-bond yield,
and the S&P 500 index. In May, monthly non-financial observations
on the April unemployment rate, hours worked, inflation, industrial
production, and personal consumption expenditures become avail-
able. On June 30, two monthly observations for each non-financial
variable are available for the second quarter. This pattern of infor-
mation repeats itself every quarter. In the remainder of the paper
we will refer to the forecast origins only by month and year, with
the understanding that estimates and forecasts are based on the
information available on the last day of the month.

4.2 Survey of Professional Forecasters

We compare the MF-VAR forecasts to median forecasts from the
SPF. The timing of the SPF is summarized in Table 3. The

5Due to data revisions by statistical agencies, observations of Y1:T−1 published
in period T are potentially different from the observations that have been pub-
lished in period T −1. Moreover, some series are published with a delay of several
periods.
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Table 2. Information at MF-VAR Forecast Origin

April 30

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q1 M3 X X X X X X X X QAv QAv QAv
Q2 M4 ∅ ∅ ∅ ∅ X X X X ∅ ∅ ∅

May 31

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q1 M3 X X X X X X X X QAv QAv QAv
Q2 M4 X X X X X X X X ∅ ∅ ∅
Q2 M5 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

June 30

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q1 M3 X X X X X X X X QAv QAv QAv
Q2 M4 X X X X X X X X ∅ ∅ ∅
Q2 M5 X X X X X X X X ∅ ∅ ∅
Q2 M6 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Note: ∅ indicates that the observation is missing. X denotes monthly observation and
QAv denotes quarterly average.

Table 3. Timing of Survey of Professional Forecasters

Questionnaires Submission Last Quarter Quarterly
Survey Name Sent to Panelists Deadline in Info Set Forecasts

1st Quarter End of January Middle of February Y–1:Q4 Y:Q1 to Y+1:Q1
2nd Quarter End of April Middle of May Y:Q1 Y:Q2 to Y+1:Q2
3rd Quarter End of July Middle of August Y:Q2 Y:Q3 to Y+1:Q3
4th Quarter End of October Middle of November Y:Q3 Y:Q4 to Y+1:Q4

Note: The questionnaires are sent after the NIPA advance report. The submission deadline is in
the second or third week of the month. “Y” refers to the year of the survey.

quarterly survey forecasts are comparable to our first-month-within-
a-quarter forecasts (January, April, July, October). Because the
survey respondents in principle have two more weeks after our end-
of-month MF-VAR forecast origin, this comparison generates a slight
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Figure 1. Extreme Monthly Observations:
Mahalanobis Distance

Note: Based on our eight monthly series, we compute the Mahalanobis distance
D(Δym,t) defined in (20). The plot is based on the January 2022 vintage.

informational advantage for the SPF. On the other hand, a com-
parison with our third-month-within-a-quarter predictions (March,
June, September, December) puts the SPF forecasts at a clear infor-
mational disadvantage against the MF-VAR because the most recent
monthly data used in the MF-VAR forecasts are released well after
the SPF submission deadline.

4.3 Outliers

Unlike in CCMM, we do not explicitly model the occurrence of
outliers in our MF-VAR through fat-tailed error distributions.
The outlier-robust estimation and forecasting methods described in
Section 3.2 rely on the researcher to pre-specify the cut-off peri-
ods t∗ and t∗∗. In view of the unprecedented mobility restrictions
imposed by governments around the world in March 2020, there was
no doubt that starting from 2020:M3 macroeconomic data would
look very different from their pre-pandemic values and the COVID
outliers were easily detectable in real time.

We are plotting the Mahalanobis distance for the eight monthly
variables (converted into growth rates) in Figure 1. The distance is
defined as

D(Δym,t) =
√

(Δym,t − μ̂)′Σ̂−1(Δym,t − μ̂). (20)
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Note that if Δym,t ∼ N(μ̂, Σ̂), then D2(Δym,t) has a χ2 distribu-
tion with degrees of freedom equal to the dimension of ym,t. Thus,
D(Δym,t) measures how far Δym,t lies in the tail of its distribution
if it were normally distributed. To generate the figure, we estimate
μ̂ and Σ̂ based on observations up to 2020:M1. In the plot we are
simply using the January 2022 vintage, but the pattern is very sim-
ilar with the real-time vintages. The left panel provides a historical
perspective, plotting D(Δym,t) from 1964 onward, whereas the right
panel zooms into the last 16 years.

The values of D(Δym,t) from 2020:M3 to 2020:M6 are unprece-
dented. Between February and March the distance measure jumped
from 3.3 to 23.3 and it reached 70.6 in April. From June to July
it dropped again from 17.8 to 7.7. For comparison, the largest
value during the Great Recession was 13.2 in 2008:M11. Thus, in
real time and also with hindsight, the monthly observations from
2020:M3 to 2020:M6 are clearly outliers. In the subsequent analy-
sis we consider three types of estimation samples. For the baseline
estimation, E1 in the terminology of Section 3.2, we use the Jan-
uary 2020 vintage which includes the 2020:M1 financial variables,
the 2019:M12 monthly macroeconomic variables, and the 2019:Q4
quarterly macroeconomic variables.6 For the estimation approach
E2, we drop observations for periods in which D(Δym,t) exceeds the
value 16. This means that observations 2020:M1 and 2020:M2 are
included in the estimation sample, the observations 2020:M3 to M6
and 2020:Q1 and Q2 are excluded from the estimation sample, and
subsequent observations are included.7 Finally, we consider the full-
sample estimation E3, which includes all observations available at
the forecast origin.

6Rather than re-estimating the MF-VAR month-by-month using the most
recent vintage but keeping the estimation sample fixed, we simply freeze the
parameter estimates.

7Maroz, Stock, and Watson (2021) estimate a dynamic factor model on a
large set of macroeconomic and financial variables and show that including an
additional factor for the COVID period improves the fit substantially. This
new COVID factor takes on large values from 2020:M3 to 2020:M6, which
is the period we drop from the estimation sample, but was less important
afterward.
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5. Empirical Results

The pre-COVID forecast performance of the MF-VAR model used
in this paper was documented in Schorfheide and Song (2015). We
showed that the MF-VAR generates more accurate nowcasts and
short-run forecasts than a VAR estimated on time-aggregated quar-
terly data. The improvement tempers off in the medium and long
run. The short-run accuracy gain is largest in the third month of
the quarter, when a lot of monthly data are available for the cur-
rent quarter. We also documented that the monthly information
helped the MF-VAR track the economic downturn during the 2008-
09 (Great) recession period more closely in real time than a VAR
estimated on quarterly data only. Similar results for other MF-VAR
specifications have been obtained by Brave, Butters, and Justiniano
(2019) and McCracken, Owyang, and Sekhposyan (2020).

We estimate the MF-VAR using p = 6 lags based on various 2020
and 2021 real-time data vintages and generate forecasts of quarterly
averages of the 11 variables that appear in the VAR. All of our esti-
mation samples start in 1964. The hyperparameter settings are the
same as in Schorfheide and Song (2015). We subsequently examine
the MF-VAR forecasts in chronological order: the COVID-19 out-
break in the United States in 2020:Q2 (Section 5.1), the continuation
of the pandemic throughout the second half of 2020 (Section 5.2),
and the first three quarters of 2021 (Section 5.3). Because our sam-
ple only spans 17 MF-VAR forecast origins and six quarters of SPF
forecasts, we examine plots of forecasts and actuals, rather than
computing forecast evaluation summary statistics.

5.1 The First Months of the COVID-19 Pandemic

April, May, and June forecasts for GDP, the unemployment rate,
and CPI inflation are plotted in Figure 2. The panels show actual
values from the January 2022 vintage (solid red), posterior median
forecasts (solid black), and 90 percent posterior predictive intervals
(light grey). Moreover, we also plot the median forecasts from the
SPF. The MF-VAR forecasts are constructed from the real-time vin-
tages available on the date of the forecast, as described in Section 4.
Unless otherwise noted, we use the baseline approach of combining
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Figure 2. Forecasts in 2020:Q2

Note: We forecast quarterly averages. Actual values (solid red, January 2022
vintage) and forecasts: median (solid black) and 90 percent bands (light grey)
constructed from the posterior predictive distribution. Green squares represent
median forecasts from the SPF. For GDP we depict percentage change relative to
December 2019. The MF-VAR is estimated based on the January 2020 vintage;
filtering uses the vintage available at the forecast origin (baseline, E1 and F1).

parameter estimation approach E1 with full-sample filtering F1; see
Sections 3.2 and 4.3.

We are reporting forecasts of quarterly averages (see tick marks
on the x-axes of the plots), which are obtained by averaging
the within-quarter monthly values simulated from the MF-VAR.
Depending on the forecast origin, actual values for some variables
might be available for the first one or two months of the first quar-
ter to be forecast. In this case, we generate the quarterly forecast
by averaging actual and simulated values. While unemployment and
inflation forecasts are plotted directly, we make the following adjust-
ment for the graphical presentation of the GDP forecasts. First,
we convert the level forecasts from the MF-VAR and the SPF into
growth rate forecasts. Second, we add the level of GDP at the fore-
cast origin according to the January 2022 vintage to the cumula-
tive growth rate forecasts. This is equivalent to adjusting the level



24 International Journal of Central Banking Forthcoming

of GDP forecasts by the difference between the GDP value at the
forecast origin as measured in the January 2022 vintage and the
real-time value at the forecast origin.8

Forecasts. In regard to the treatment of the latent states
at the forecast origin conditional on the parameter estimates, the
April forecasts are, with the exception of the April financial vari-
ables (federal funds rate, Treasury-bond yield, and S&P 500 index)
based on Q1 and March data. The economic downturn started in the
second half of March when the mobility restrictions became effective.
According to the January 2022 vintage, quarter-on-quarter (Q-o-Q)
GDP growth in Q1 was −1.3 percent, which is approximately 1.5
times the historical standard deviation in the estimation sample.
Industrial production in March 2020 dropped by 3.9 percent and
the unemployment rate increased from 3.5 percent to 4.4 percent. At
an annualized rate, consumer prices fell by 3.9 percent. Recall from
Figure 1 that the Mahalanobis distance for the monthly variables
jumped from 3.3 to 23.3 in March.

Because the severity of the pandemic was not yet fully reflected
in the observations available for the forecast origin, the April MF-
VAR forecasts did not capture the unprecedented magnitude of the
downturn. While the posterior median forecast for Q2 GDP growth
was −2.8 percent, the actual drop was −9.4 percent. Likewise, the
Q2 unemployment forecast was 5.2 percent, whereas the actual aver-
age unemployment rate in Q2 was 13.1 percent. The SPF forecast-
ers had an additional week or two to gather information about the
economic consequences of the pandemic and the freedom to make
judgmental adjustments to model-based forecasts. The figure shows
that the median SPF forecasts for GDP and inflation for Q2 were
more pessimistic and thereby much closer to the respective actuals
than the MF-VAR forecasts. In terms of inflation, the Q2 forecasts
of MF-VAR and SPF essentially agree, but over the medium run the
SPF forecasters correctly predicted a rise in inflation, whereas the
median-run MF-VAR forecast stayed close to zero.

8Abstracting from publication lags, denote the time τ release of yt by yτ
t ,

τ = t, t + 1, . . .. We would like to compare the forecasts yt+h|t, h = 1, . . . , H

to the end-of-sample values yT
t+h. However, the real-time forecast origin value yt

t

(h = 0) does not match the final vintage value yT
t . Thus, we correct the level of

the forecasts by yT
t − yt

t .
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We now turn to the May forecasts of GDP and unemployment,
which use observations on the April monthly non-financial variables
to quantify lagged values at the forecast origin. Under F1 filter-
ing, the MF-VAR requires very large “COVID-19” shocks in the
state-transition equation to be able to rationalize the April data.
Because historically macroeconomic shocks have had very persistent
effects on the time series included in the MF-VAR specification, the
model predicts long-lasting adverse effects of the COVID-19 shocks:
until the end of 2021 GDP will stay 15 percent to 20 percent below
its December 2019 value and the unemployment rate will remain
above 13 percent. A comparison to the actuals shows that these fore-
casts were overly pessimistic: over the forecast period, GDP reverts
back to its 2019:Q4 level and the unemployment rate falls below
6 percent. The June information leads to slightly more favorable
MF-VAR forecasts, but the model continues to predict long-lasting
macroeconomic effects of the pandemic.

Recall that the survey underlying the SPF forecasts is only con-
ducted quarterly. Thus, the May and June SPF forecasts plotted
in Figure 2 are the same as the April forecasts.9 As we have seen
before, the SPF predicts a much faster recovery than the MF-VAR
and, ex post, its median forecasts turned out to be much more accu-
rate than the MF-VAR forecasts. Overall, the forecast performance
of the MF-VAR during the first three months of the pandemic is
poor, compared to the SPF, which presumably incorporates other
data sources and judgment about the idiosyncratic nature of the
COVID-19 recession.

Effect of Estimation Sample. We proceed by examining the
effect of choosing the endpoint of the estimation sample on the fore-
casts. To construct the baseline forecasts, we used the approach
E1 and excluded observations that became available after January
2020 from the estimation.10 This is a sensible strategy if the pan-
demic was a shock to the economy that was unusually large, indeed
several standard deviations in magnitude, but did not change the

9The plotted values can be slightly different within the quarter, because we
are converting level forecasts into growth rate forecasts and add the growth rates
to the level at the origin which may get revised from month to month.

10Recall from Section 2 that in a state-space setting this approach is equivalent
to setting the measurement error variance to infinity.
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Figure 3. Effect of Estimation Sample on GDP Forecasts

Note: We forecast quarterly averages. Actual values (solid red, January 2022
vintage) and forecasts: median (solid black) and 90 percent bands (light grey)
constructed from the posterior predictive distribution. Green squares repre-
sent median forecasts from the SPF. We depict percentage change relative to
December 2019. Full Sample (E3): The MF-VAR is estimated based on data up
to the forecast origin. Baseline (E1): The MF-VAR is estimated based on the
January 2020 vintage. Estimates are combined with filtering approach F1.

fundamental workings of the aggregate economy. Unless explicitly
modeled, the COVID-19 outliers simply distort the parameter esti-
mates. On the other hand, if the pandemic fundamentally changed
macroeconomic dynamics, then the most recent observations should
be included in the estimation, and earlier observations should pos-
sibly be discounted.

In Figure 3 we compare GDP forecasts from a full-sample estima-
tion (top row) that includes data up to the forecast origin (but does
not downweight pre-pandemic observations)—estimation approach
E3 combined with filtering approach F1 in the terminology of
Section 3.2—to the baseline forecasts. For April 2020 the two sets of
forecasts are very similar, because the estimation sample ends with
the Q1 and March non-financial variables which are not yet severely
affected by the pandemic, as discussed previously.

The difference between the forecasts is most pronounced for the
May 2020 forecast origin. Here the 90 percent bands under the
full-sample estimation are considerably wider than the bands under
the baseline estimation. Moreover, the median forecasts drop below
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Figure 4. Effect of Filtering on Forecasts in May 2020

Note: We forecast quarterly averages. Actual values (solid red, January 2022
vintage) and forecasts: median (solid black) and 90 percent bands (light grey)
constructed from the posterior predictive distribution. For GDP we depict per-
centage change relative to December 2019. The MF-VAR is estimated based on
the January 2020 vintage (baseline estimation, E1).

−40 percent in 2020:Q4, whereas under the baseline estimation the
median forecasts only fall to about −20 percent. The increase in
forecast interval width is mainly driven by the estimates of Σ which
increased due to the extreme observations in April 2020. The discrep-
ancy among the forecasts shrinks again for the June 2020. In general,
after the initial adjustment of the economy to the COVID-19 pan-
demic, we expect the magnitude of subsequent shocks to be more
similar to the pre-2020 experience. For 2020:Q2 we find no upside
in including post-January observations in the estimation sample.

Effect of Filtering to Extract States at Forecast Origin.
In the subsequent experiment we revert to the baseline parame-
ter estimation approach E1, excluding 2020 observations from the
estimation sample. Instead, we vary the post-estimation filtering to
infer the states at the forecast origin. The results are summarized
in Figure 4. The plots in the first column of the figure reproduce
the baseline May forecasts in Figure 2. The second column is gen-
erated using filtering approach F2. We set Mt = ∅ for 2020:M4,
which means that the lagged values needed for the May forecasts
are obtained by iterating the state-transition equation forward from



28 International Journal of Central Banking Forthcoming

the March data onward. This has a drastic effect on the real activity
forecasts. The F2 approach completely misses the Q2 drop in GDP
and spike in unemployment. However, for Q3 onward it generates
less pessimistic forecasts that turned out ex post to be closer to the
actual path of the economy. Under F1 the ST propagates the large
shock to rationalize the April observations, whereas F2 attributes
the outliers to measurement errors and does not propagate them
forward.

In the last column we show forecasts based on approach F3 where
we robustify the ST by inflating the estimated innovation covariance
matrix by a factor of 302. Based on the calculations summarized in
Table 1, it is not surprising that the F3 forecasts look essentially
identical to the F1 forecasts. Despite the inflated innovation vari-
ance, inference on the latent state continues to be driven by the
April outlier.

5.2 The Second Half of 2020

We now turn to forecasts during 2020:Q3 and Q4. We proceed with
the baseline approach of combining E1 and F1. MF-VAR forecasts,
SPF forecasts, and actuals from the January 2022 vintage are pre-
sented in three figures: real activity variables in Figure 5, labor
market variables in Figure 6, and inflation and financial variables
in Figure 7. The July 2020 panels overlay the MF-VAR forecasts
with SPF forecasts from the Q3 survey, whereas the October and
December 2020 panels compare the MF-VAR forecasts to Q4 SPF
forecasts. As discussed in Section 4.2, for the first month within a
quarter, the SPF forecasters have a slight informational advantage
compared to the MF-VAR, whereas for the third month within a
quarter, the MF-VAR has a strong advantage.

Real Activity and Government Spending. In July 2020
the MF-VAR predicts that GDP and industrial production return
to their respective 2019:Q4 values in the second half of 2021. The
median forecast from the SPF is less optimistic and about 3 percent
to 5 percent lower than the MF-VAR forecast. While the October
and December industrial production forecasts from the MF-VAR
look quite similar to the July forecast, the GDP forecasts made in
2020:Q4 imply a slightly stronger recovery than the July forecast.
Compared to the July forecasts, the gaps between MF-VAR and
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Figure 5. Real Activity Forecasts in 2020:Q3 and Q4

Note: We forecast quarterly averages. Actual values (solid red, January 2022
vintage) and forecasts: median (solid black) and 90 percent bands (light grey)
constructed from the posterior predictive distribution. Green squares represent
median forecasts from the SPF. We depict percentage change relative to Decem-
ber 2019. The MF-VAR is estimated based on the January 2020 vintage; filtering
uses the vintage available at the forecast origin (baseline approach, E1 and F1).

SPF forecasts narrow in Q4 (October and December). Compared to
the Q2 forecasts presented in Section 5.1, the most remarkable differ-
ence in the second half of 2020 is that the posterior median forecasts
produced in Q3 and Q4 accurately predict GDP and industrial pro-
duction over a one-year horizon. In fact, the MF-VAR forecasts are
now more accurate than the SPF forecasts.
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Figure 6. Labor Market Forecasts in 2020:Q3 and Q4

Note: We forecast quarterly averages. Actual values (solid red, January 2022
vintage) and forecasts: median (solid black) and 90 percent bands (light grey)
constructed from the posterior predictive distribution. Green squares represent
median forecasts from the SPF. For Hours Worked we depict percentage change
relative to December 2019. The MF-VAR is estimated based on the January 2020
vintage; filtering uses the vintage available at the forecast origin (baseline, E1 and
F1).

The MF-VAR predicts throughout the second half of 2020 that
consumption returns to its December 2019 value by 2021:Q2 (Octo-
ber and December forecasts). The forecast error for the 2020:Q4
observation is close to zero. In 2021 actual consumption rises faster
than the forecast, but by and large stays within the 90 percent cred-
ible intervals. Only the band from the December 31 forecast for
2021:Q2 does not cover the actual value. The posterior median fore-
casts for investment imply a quick recovery. By the end of 2021,
investment is expected to be about 10 percent above the 2019:Q4
value. The forecasts from all three origins are quite accurate. Finally,
the last row of Figure 5 shows government spending forecasts. The
median MF-VAR consumption and investment forecasts are overall
more optimistic than the SPF forecast in regard to the recovery from
the pandemic downturn.

Labor Market. Unemployment and hours worked forecasts are
presented in Figure 6. For the unemployment rate the MF-VAR
and SPF forecasts are very similar. The Q3 and Q4 SPF forecasts
are slightly lower than the July and October MF-VAR forecasts,
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Figure 7. Inflation and Financial
Forecasts in 2020:Q3 and Q4

Note: We forecast quarterly averages. Actual values (solid red, January 2022
vintage) and forecasts: median (solid black) and 90 percent bands (light grey)
constructed from the posterior predictive distribution. Green squares represent
median forecasts from the SPF. For S&P 500 Returns we depict percentage
change relative to December 2019. The MF-VAR is estimated based on the
January 2020 vintage; filtering uses the vintage available at the forecast origin
(baseline, E1 and F1).

respectively, in particular over a one-year horizon. By December
unemployment had fallen substantially compared to its Q2 peak and
now the MF-VAR forecast that utilizes the most recent information
is below the SPF forecast, at least in the short run. In absolute terms,
the July forecast is too pessimistic: unemployment falls more quickly
than predicted and the actual path is outside of the 90 percent band.
The December MF-VAR unemployment forecast, on the other hand,
is very accurate; only the 2021:Q4 actual lies slightly outside of the
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predictive interval. The second row of Figure 6 demonstrates that
the MF-VAR is successful in predicting the recovery of hours worked.

Inflation and Financial Indicators. Figure 7 shows forecasts
of inflation and the financial variables. For October and Decem-
ber, the MF-VAR and SPF forecasts of inflation are very similar,
despite the additional information used by the December MF-VAR.
Both approaches capture the drop in inflation between 2020:Q3 and
2020:Q4, but they miss the subsequent rise in inflation, predicting
that inflation stays around 2 percent throughout 2021. The MF-
VAR predicts a lift-off from the effective lower bound on nominal
interest rates which did not happen. While the 10-year Treasury-
bond yield forecast in July correctly predicts the actual path, the
median forecasts in October and December slightly underestimate
the actual yield. For all three forecast origins, the MF-VAR yield
forecasts dominate the SPF forecasts. Finally, the MF-VAR implied
median forecasts for the S&P 500 slightly underpredict the stock
market recovery.

Overall, we conclude that while the forecast performance of the
MF-VAR was poor in the second quarter of 2020, the predictions
are back on track in the third and fourth quarter. In fact, they are
in general as good as or better than the SPF forecasts.

5.3 Forecasts in 2021

Forecasts of GDP, unemployment, and CPI inflation made in Jan-
uary and July 2021 are depicted in Figure 8. Going forward, an
important question when estimating VARs and other time-series
models will be how to treat the extreme observations during the pan-
demic. We previously compared our baseline approach E1 of ending
the estimation sample in January 2020 to the full-sample estima-
tion E3. In addition, we now consider the following two estimation
strategies. First, instead of ending the estimation sample in January
2020, we only drop four months of extreme observations (from March
to June, denoted by No 2020:M3–M6) from the estimation sample,
denoted by E2 in Section 3.2. We thereby allow the estimates to
adapt to post–June 2020 observations. Second, we implement the
LP proposal of scaling the innovation variance during 2020:Q2 in a
data-driven manner and then letting the scale factor decline subse-
quently. By inflating the innovation covariance matrix, this approach
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Figure 8. January and July Forecasts for 2021

Note: We forecast quarterly averages. Actual values (solid red, January 2022
vintage) and forecasts: median (solid black) and 90 percent bands (light grey)
constructed from the posterior predictive distribution. Green squares represent
median forecasts from the SPF. For GDP we depict percentage change relative
to December 2019. Baseline (E1): estimation based on the January 2020 vintage.
No 2020:M3–M6 (E2): we treat monthly observations from 2020:M3 to M6 and
quarterly observations for 2020:Q1 and Q2 as missing. Full Sample (E3): The
MF-VAR is estimated based on data available at the forecast origin. Filtering
uses the vintage available at the forecast origin (F1).

also discounts pandemic observations in the model estimation stage.
Throughout, we use filtering approach F1.

For the forecast origins January and July 2021 baseline esti-
mation, the No-2020:M3–M6 estimation, and full-sample estimation
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yield very similar posterior median predictions, which are very close
to the SPF predictions. The main difference is the width of the pre-
dictive intervals. The full estimation approach generates the widest
interval among E1, E2, and E3, because the estimate of Σ is heavily
influenced by the outliers in 2020:Q2. The baseline approach yields
the shortest intervals because all pandemic observations are excluded
from the estimation of Σ. The approach of excluding only observa-
tions from March to June 2020 generates intervals that are slightly
wider than the baseline intervals but shorter than the full-sample
estimation. For instance, for the January 2021 forecast origin, the
widths of the predictive intervals for 2021:Q1 are 2.3, 2.5, and 3.1
under E1, E2, and E3. The interval widths for the four-quarter-
ahead forecasts are 10.5, 11.0, and 14.0, respectively. Compared to
the widths of the predictive intervals, the differences in the posterior
median forecasts across estimation strategies are small (less than 0.3
percentage point).

The width-based ranking of the E1, E2, and E3 forecasts for
unemployment and inflation is the same as for GDP. The main
difference is that for the July 2021 forecast origin the wider unem-
ployment intervals associated with the full-sample estimates contain
the actual values whereas the narrower E1 and E2 intervals do not.
None of the three estimation approaches generates a forecast that is
able to capture the high level of inflation in 2021.

Finally, we turn to the forecasts generated with the LP approach.
The key difference is that the predictive intervals are substantially
wider. For instance, the widths of the January 2021 GDP forecast
intervals for 2021:Q1 and Q4 GDP are 7.5 and 22.4, respectively.
Thus, they are approximately twice as wide as the other intervals.
The estimated decay coefficient ρ is too large for the scaling to decay
sufficiently fast. Ex post, the band for the GDP forecast is unreason-
ably wide. The posterior median GDP point forecasts from the LP
approach generated in January are slightly higher and more accu-
rate than the other three forecasts, whereas the July forecasts are
slightly lower and less accurate. The remaining panels in Figure 8
depict unemployment and inflation forecasts. The posterior median
point forecasts are very similar across all four approaches, includ-
ing LP. As in the case of GDP, the most striking difference between
the LP interval predictions and the other three interval forecasts
is that the LP intervals are considerably wider. For unemployment



Forthcoming MF-VAR Forecasting During a Pandemic 35

and inflation this arguably works in favor of LP because the unem-
ployment and inflation realizations in the second half of 2021 are
included in the predictive intervals.

A quantitative comparison of our empirical findings to those
reported by LP and CCMM is difficult because the variables included
in the VAR are different, the other studies are not using real-time
data, and the forecast objects—in our case, variables aggregated
to quarterly frequency—are different. Moreover, LP condition their
forecasts on the path of unemployment. Figure 3 of LP compares
June 2020 interval forecasts from the volatility-break model to a
constant-volatility model estimated with data up until February
2020 (baseline estimation E1 in our classification). LP’s volatility-
break intervals are considerably wider than the constant-volatility
intervals. Figure 4 of LP provides the same comparison for the May
2021 forecasts. Here the intervals from the two methods have simi-
lar widths, meaning that the estimated decay rate for the volatility
spike is quite large. In contrast, we find that for July 2021 the inter-
vals generated with the LP approach remain considerably wider than
our baseline intervals, as we estimate a smaller decay rate for our set
of variables. CCMM plot unemployment forecasts in their Figure 5,
comparing their preferred stochastic volatility (SV) model with out-
liers and conditional Student-t distributions to an SV model in which
outliers were ex ante identified and replaced by imputed values in a
way that is similar to what we labeled as “robust ME.” Their Decem-
ber 2020 forecast is comparable to our January 2020 forecast. For
that particular origin, dropping versus modeling the outliers delivers
very similar point and interval forecasts which appear to match our
unemployment forecasts.

Overall, we conclude that excluding the March to June 2020
observations is a promising way of handling the estimation prob-
lem of vector autoregressive time-series models going forward. This
approach trades off ease of implementation against some elegance
and accuracy and is desirable in settings in which a more sophis-
ticated modeling approach appears to be overly costly. Our state-
space approach treats outliers as missing observations and imputes
values based on the estimated VAR law of motion. In regular VARs
the analysis could be further simplified by also dropping periods
for which right-hand-side variables are contaminated by extreme
outliers, instead of imputing missing lags.
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6. Conclusion

We resuscitated the mixed-frequency vector autoregression
(MF-VAR) developed in Schorfheide and Song (2015) to generate
macroeconomic forecasts for the United States during the COVID-19
pandemic from April 2020 to August 2021 in real time. While the
forecasting performance of the MF-VAR was quite poor compared to
the SPF from April to June 2020, the MF-VAR produced forecasts
that are of similar accuracy as the SPF forecasts from July 2020
onward. The only adjustment that we made relative to our pre-
pandemic MF-VAR specification was to exclude observations from
the early part of the pandemic from the estimation sample. Impor-
tantly, we did not modify the model ex post to be able to generate
good forecasts in the March to June period retrospectively. This
finding is remarkable because it implies that going forward, in appli-
cations in which a careful modeling of outliers is impractical, VARs
can simply be estimated by excluding observations from the first half
of 2020. Our results also suggest that it is prudent for the assessment
of the forecasting performance of time-series models to separate the
first months of the pandemic from later periods. Because the period
from March to June 2020 was highly unusual in many dimensions,
the forecast performance in the subsequent months is likely to be
more indicative of future forecast performance.

Appendix

This appendix consists of the following sections:

• A.1 Derivations for Section 2
• A.2 Computational Details
• A.3 Data Set

A.1 Derivations for Section 2

We calculate

�y(θ̂, yt; Y(−t), χt) =
∂

∂yt

[
ln p(yt|Y1:t−1, θ̂, χt) + ln p(yt+1|Y1:t, θ̂, χt)

]
= −

yt − yt|t−1

Ft|t−1
+

yt+1 − yt+1|t
Ft+1|t

∂

∂yt
yt+1|t

= −
yt − yt|t−1

Ft|t−1
+

yt+1 − yt+1|t
Ft+1|t

θλ(Pt−1|t−1, χt, θ).
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In turn,
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We obtain
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Moreover,
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We can now take limits
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A.2 Computation Details

We modify the posterior sampler developed in Schorfheide and Song
(2015) to account for the latent scale sequence st defined in (19) and
its associated parameter vector ϑ. The Bayesian computations are
implemented with a Metropolis-within-Gibbs sampler that iterates
over the following three conditional distributions:11

p(Φ, Σ|Z0:T , Y−p+1:T , ϑ) ∝ p(Z1:T |z0, Φ, Σ, ϑ)p(Φ, Σ|λ)

p(Z0:T |Φ, Σ, Y−p+1:T , ϑ) ∝ p(Y1:T |Z1:T )p(Z1:T |z0, Φ, Σ, ϑ)

× p(z0|Y−p+1)

p(ϑ|Φ, Σ, Z0:T , Y−p+1:T ) ∝ p(Z1:T |z0, Φ, Σ, ϑ)p(ϑ), (A.1)

where the third distribution is new. The modifications are as
follows:

Step 1: Conditional on Z0:T the MF-VAR reduces to a stan-
dard linear Gaussian VAR with a conjugate prior. To sample from
p(Φ, Σ|Z0:T , Y−p+1:T , ϑ), write the VAR in slight abuse of notation
as

x′
t = z′

t−1Φ + stu
′
t, (A.2)

where we treat xt as observed and incorporate a constant term in
the definition of zt−1. Recall that the sequence {st} can be generated
from ϑ. The likelihood function is given by

p(X|Φ, Σ, S)

∝
(∏

t=1

|s2
t Σ|−1/2

)

× exp

{
−1

2

T∑
t=1

tr
[
s−2

t Σ−1(x′
t − z′

t−1Φ)′(x′
t − z′

t−1Φ)
]}

11Lenza and Primiceri (2022) use a posterior sampler that integrates out (Φ, Σ)
analytically. Because of the state-space form of the MF-VAR, this approach is
not feasible in our settings. Thus, we will use a Metropolis-within-Gibbs step.
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∝
(∏
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s−n
t

)
|Σ|−T/2 exp

{
−1

2
tr

[
Σ−1(X̃ − Z̃−1Φ)′(X̃ − Z̃−1Φ)

]}
,

(A.3)

where X̃ has rows x′
t/st and Z̃−1 has rows zt−1/st. Thus, the pos-

terior sampler for (Φ, Σ) only requires the transformation of X into
X̃ and Z−1 into Z̃.

Step 2: Sampling from p(Z0:T |Φ, Σ, Y−p+1:T , ϑ) can be easily imple-
mented by replacing the covariance matrix Σ by Σ̃t = s2

t Σ in every
period t.

Step 3: We follow Lenza and Primiceri (2022) in using a Pareto
distribution to form a prior for s̄2

j and a Beta distribution for ρ.
Thus,

p(ϑ) =

⎛
⎝ 2∏

j=0

1
s̄2

j

I{s̄2
j ≥ 1}

⎞
⎠ 1

B(p, q)
ρp−1(1 − ρ)q−1, (A.4)

where p and q are chosen such that the Beta distribution has mean
0.8 and standard deviation 0.2. We split ϑ into three components—
s̄2
0, s̄2

1, and (s̄2
2, ρ)—and sample each component conditional on val-

ues for the other three components.

Sampling from the Posterior of s̄2
0. Note that s̄2

0 only affects
the density for period t∗:
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0
.
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β0 =
1
2
tr

[
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t∗ − z′
t∗−1Φ)

]
, α0 = n/2.
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Then the distribution of s̄2
0 is inverse Gamma (α0, β0) truncated at

1.12 Notice that the distribution of s̄2
0 is independent of the other ϑ

elements.
Sampling from the Posterior of s̄2

1. Note that s̄2
1 only affects

the density for period t∗ + 1:
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elements.
Sampling from the Posterior of (s̄2

2, ρ). Note that (s̄2
2, ρ)

affect the density for period t∗ + 2 onwards:
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12The IG(α, β) distribution has density (βα/Γ(α))(1/x)α+1 exp(−β/x).
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Table A.1. ALFRED Series Used in Analysis

Time Series ALFRED Name

Gross Domestic Product (GDP) GDPC1
Fixed Investment (INVFIX) FPIC1
Government Expenditures (GOV) GCEC1
Unemployment Rate (UNR) UNRATE
Hours Worked (HRS) AWHI
Consumer Price Index (CPI) CPIAUCSL
Industrial Production Index (IP) INDPRO
Personal Consumption Expenditure (PCE) PCEC96
Federal Fund Rate (FF) FEDFUNDS
10-Year Treasury Bond Yield (TB) GS10
S&P 500 (SP500) SP500

This density does not belong to a specific family of distributions
from which we can sample directly. Thus, we use a random-walk
Metropolis-Hastings step.

Initialization of ϑ and Proposal Covariance Matrix.
(i) We initialize ρ0 using the prior mean of 0.8. (ii) Based on para-
meter estimates from a run that stops estimation in, say, December
2019, we use the estimates (Φ̂, Σ̂, Ẑ) to compute (αj , βj) for the con-
ditional posteriors p(s̄j |·), j = 0, 1. We initialize s̄j using the mean
βj/(αj − 1). Assuming that s̄2 only affects observation t = t∗ + 2,
the same approach can be used to initialize s̄2. (iii) For the proposal
covariance matrix in the random-walk Metropolis-Hastings step, we
use a diagonal matrix. The element for ρ is a fraction of its prior
variance, e.g., 0.22/10, and for s̄2 we use β2

2/(α2 −1)2(α2 −2), where
α2 and β2 are defined in the same way as α1 and β1.

A.3 Data Set

The 11 real-time macroeconomic data series are obtained from the
ALFRED (Archival Federal Reserve Economic Data) database main-
tained by the Federal Reserve Bank of St. Louis. Table A.1 sum-
marizes how the series used in this paper are linked to the series
provided by ALFRED.

The recent vintages of PCE and INVFIX from ALFRED do not
include data prior to 2002. However, the most recent data for PCE
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and INVFIX can be obtained from BEA or NIPA tables. Specifically,
we download “Table 2.8.3. Real Personal Consumption Expenditures
by Major Type of Product, Monthly, Quantity Indexes” for PCE
and “Table 5.3.3. Real Private Fixed Investment by Type, Quantity
Indexes” for INVFIX, which are available from January 1, 1959 and
January 1, 1948 to current periods, respectively. First, we compute
the growth rates from the quantity indices. Based on the computed
growth rates, we can backcast historical series up to January 1, 1964
using the January 1, 2002 data points as initializations. We think
this is a reasonable way to construct the missing points for PCE and
INVFIX.

Figures A.1 and A.2 provide the time-series plot of our 11 macro-
economic variables obtained from the August 2021 vintage.

Figure A.1. Monthly Data

Note: Month-on-month percentage changes are annualized. The data are
obtained from the January 2022 vintage, starting from 1964. The shaded bars
indicate the NBER recession dates.
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Figure A.2. Quarterly Data, Q-o-Q
Growth Rates in Annualized %

Note: The data are obtained from the January 2022 vintage, starting from 1964.
The shaded bars indicate the NBER recession dates.
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