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Recent treatments of the issue of a zero floor on nominal
interest rates have been subject to some important method-
ological limitations. These include the assumption of perfect
foresight or the introduction of the zero lower bound as an
initial condition or a constraint on the variance of the inter-
est rate, rather than an occasionally binding non-negativity
constraint. This paper addresses these issues, offering a global
solution to a standard dynamic stochastic sticky-price model
with an explicit occasionally binding non-negativity constraint
on the nominal interest rate. It turns out that the dynam-
ics and sometimes the unconditional means of the nominal
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uncertainty in the presence of the zero lower bound. Commit-
ment to the optimal rule reduces unconditional welfare losses
to around one-tenth of those achievable under discretionary
policy, while constant price-level targeting delivers losses that
are only 60 percent larger than those under the optimal rule.
Even though the unconditional performance of simple instru-
ment rules is almost unaffected by the presence of the zero
lower bound, conditional on a strong deflationary shock, simple
instrument rules perform substantially worse than the optimal
policy.
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1. Introduction

An economy is said to be in a “liquidity trap” when the mone-
tary authority cannot achieve a lower nominal interest rate in order
to stimulate output. Such a situation can arise when the nominal
interest rate has reached its zero lower bound (ZLB), below which
nobody would be willing to lend, if money can be stored at no cost
for a nominally riskless zero rate of return.

The possibility of a liquidity trap was first suggested by Keynes
(1936) with reference to the Great Depression of the 1930s. At that
time he compared the effectiveness of monetary policy in such a
situation to trying to “push on a string.” After WWII and espe-
cially during the high-inflation period of the 1970s, interest in the
topic receded, and the liquidity trap was relegated to a hypothetical
textbook example. As Krugman (1998) noticed, of the few modern
papers that dealt with it, most concluded that “the liquidity trap
can’t happen, it didn’t happen, and it won’t happen again.”

With the benefit of hindsight, however, it did happen, and to
no less than Japan. Figure 1 illustrates this, showing the evolution
of output, inflation, and the short-term nominal interest rate fol-
lowing the collapse of the Japanese real estate bubble of the late
1980s. The figure exhibits a persistent downward trend in all three
variables and, in particular, the emergence of deflation since 1998
coupled with a zero nominal interest rate since 1999.

Motivated by the recent experience of Japan, the aim of the
present paper is to contribute a quantitative analysis of the ZLB
issue in a standard sticky-price model under alternative monetary
policy regimes. On the one hand, the paper characterizes optimal
monetary policy in the case of discretion and commitment.! On
the other hand, it studies the performance of several simple mone-
tary policy rules, modified to comply with the zero floor, relative to
the optimal commitment policy. The analysis is carried out within
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!The part of the paper on optimal policy is similar to independent work by
Adam and Billi (2006, 2007). The added value is to quantify and compare the
performance of optimal commitment policy with that of a number of suboptimal
rules in the same stochastic sticky-price setup.
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Figure 1. Japan’s Fall into a Liquidity Trap
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a stochastic general equilibrium model with monopolistic compe-
tition and Calvo (1983) staggered price setting, under a standard
calibration to the postwar U.S. economy.

The main findings are as follows: the optimal discretionary policy
with zero floor involves a deflationary bias, which may be significant
for certain parameter values and which implies that any quantitative
analyses of discretionary biases of monetary policy that ignore the
zero lower bound may be misleading. In addition, optimal discre-
tionary policy implies much more aggressive cutting of the interest
rate when the risk of deflation is high, compared with the corre-
sponding policy without zero floor. Such a policy helps mitigate the
depressing effect of private-sector expectations on current output
and prices when the probability of falling into a liquidity trap is
high.?

2An early version of this paper comparing the performance of optimal dis-
cretionary policy with three simple Taylor rules was circulated in 2004; optimal
commitment policy and more simple rules were added in a version circulated in
2005. Optimal discretionary policy was studied independently by Adam and Billi
(2004b), and optimal commitment policy by Adam and Billi (2004a).
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In contrast, optimal commitment policy involves less preemptive
lowering of the interest rate in anticipation of a liquidity trap, but
it entails a promise for sustained monetary policy easing following
an exit from a trap. This type of commitment enables the central
bank to achieve higher expected (and actual) inflation and lower real
rates in periods when the zero floor on nominal rates is binding.?
As a result, under the baseline calibration, the expected welfare loss
under commitment is only around one-tenth of the loss under opti-
mal discretionary policy. This implies that the cost of discretion may
be much higher than normally considered when abstracting from the
zero-lower-bound issue.

The average welfare losses under simple instrument rules are
eight to twenty times larger than those under the optimal rule. How-
ever, the bulk of these losses stem from the intrinsic suboptimality
of simple instrument rules and not from the zero floor per se. This
is related to the fact that under these rules the zero floor is hit
very rarely—Iless than 1 percent of the time—compared with opti-
mal commitment policy, which visits the liquidity trap one-third of
the time. On the other hand, conditional on a large deflationary
shock, the relative performance of simple instrument rules deterio-
rates substantially vis-a-vis the optimal commitment policy.

Issues of deflation and the liquidity trap have received consid-
erable attention recently, especially after the experience of Japan.?
In an influential article, Krugman (1998) argued that the liquid-
ity trap boils down to a credibility problem in which private agents
expect any monetary expansion to be reverted once the economy has
recovered. As a solution, he suggested that the central bank should
commit to a policy of high future inflation over an extended horizon.

More recently, Jung, Teranishi, and Watanabe (2005) have
explored the effect of the zero lower bound in a standard sticky-price
model with Calvo price setting under the assumption of perfect fore-
sight. Consistent with Krugman (1998), they conclude that optimal

3This basic intuition was suggested already by Krugman (1998), based on a
simpler model.

“A partial list of relevant studies includes Krugman (1998), Wolman (1998),
McCallum (2000), Reifschneider and Williams (2000), Eggertsson and Woodford
(2003), Klaeffling and Lopez-Perez (2003), Coenen, Orphanides, and Wieland
(2004), Jung, Teranishi, and Watanabe (2005), Kato and Nishiyama (2005), and
Adam and Billi (2006, 2007).
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commitment policy entails a promise of a zero nominal interest for
some time after the economy has recovered. Eggertsson and Wood-
ford (2003) study optimal commitment policy with zero lower bound
in a similar model in which the natural rate of interest is allowed
to take two different values. In particular, it is assumed to become
negative initially and then to jump to its “normal” positive level
with a fixed probability in each period. These authors also conclude
that the central bank should create inflationary expectations for the
future. Importantly, they derive a moving price-level targeting rule
that delivers the optimal commitment policy in this model.

One shortcoming of much of the modern literature on monetary
policy rules is that it largely ignores the ZLB issue or at best uses
rough approximations to address the problem. For instance, Rotem-
berg and Woodford (1997) introduce nominal rate targeting as an
additional central bank objective, which ensures that the resulting
path of the nominal rate does not violate the zero lower bound too
often. In a similar vein, Schmitt-Grohe and Uribe (2004) exclude
from their analysis instrument rules that result in a nominal rate
with an average that is less than twice its standard deviation. In
both cases, therefore, one might argue that for sufficiently large
shocks that happen with a probability as high as 5 percent, the
derived monetary policy rules are inconsistent with the zero lower
bound.

On the other hand, of the few papers that do introduce an explicit
non-negativity constraint on nominal interest rates, most simplify
the stochastics of the model—e.g., by assuming perfect foresight
(Jung, Teranishi, and Watanabe 2005) or a two-state low /high econ-
omy (Wolman 1998; Eggertsson and Woodford 2003). Even then, the
zero lower bound is effectively imposed as an initial (“low”) condition
and not as an occasionally binding constraint.® While this assump-
tion may provide a reasonable first pass at a quantitative analysis,
it may be misleading to the extent that it ignores the occasionally
binding nature of the zero interest rate floor.

Other studies (e.g., Coenen, Orphanides, and Wieland 2004) lay
out a stochastic model but knowingly apply inappropriate solution
techniques that rely on the assumption of certainty equivalence. It

SNamely, the zero floor binds for the first several periods, but once the econ-
omy transits to the “high” state, the ZLB never binds thereafter.
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is well known that this assumption is violated in the presence of a
nonlinear constraint such as the zero floor, but nevertheless these
researchers have imposed it for reasons of tractability (admittedly,
they work with a larger model than the one studied here). Yet forcing
certainty equivalence in this case amounts to assuming that agents
ignore the risk of the economy falling into a liquidity trap when
making their optimal decisions.

The present study contributes to the above literature by solving
numerically a stochastic general equilibrium model with monopolis-
tic competition and sticky prices with an explicit occasionally bind-
ing zero lower bound, using an appropriate global solution technique
that does not rely on certainty equivalence. It extends the analysis
of Jung, Teranishi, and Watanabe (2005) to the stochastic case with
an AR(1) process for the natural rate of interest.

After a brief outline of the basic framework adopted in the analy-
sis (section 2), the paper characterizes and contrasts the optimal
discretionary and optimal commitment policies (sections 3 and 4). It
then analyzes the performance of a range of simple instrument and
targeting rules (sections 5 and 6) consistent with the zero floor.
Sections 4-6 include a comparison of the conditional performance
of all rules in a simulated liquidity trap, while section 7 presents
their average performance, including a ranking according to uncon-
ditional expected welfare. Section 8 studies the sensitivity of the
findings to various parameters of the model, as well as the implica-
tions of endogenous inflation persistence for the ZLB issue, and the
last section concludes.

2. Baseline Model

While in principle the zero-lower-bound phenomenon can be studied
in a model with flexible prices, it is with sticky prices that the lig-
uidity trap becomes a real problem. The basic framework adopted
in this study is a stochastic general equilibrium model with monop-
olistic competition and staggered price setting a la Calvo (1983) as

SThese include truncated Taylor-type rules reacting to contemporaneous,
expected, or past inflation, output gap, or price level, and with or without “inter-
est rate smoothing”; truncated first-difference rules; the “augmented Taylor rule”
by Reifschneider and Williams (2000); and flexible price-level targeting.
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in Gali (2003) and Woodford (2003). In its simplest log-linearized
version,” the model consists of three building blocks, describing the
behavior of households, firms, and the monetary authority.

The first block, known as the “IS curve,” summarizes the house-
hold’s optimal consumption decision,

Ty = Etflft+1 - U(it - Etﬂt+1 — T';:n) (1)

It relates the “output gap” z; (i.e., the deviation of output from
its flexible-price equilibrium) positively to the expected future out-
put gap and negatively to the gap between the ex ante real interest
rate, iy — Fymi11, and the “natural” (i.e., flexible-price equilibrium)
real rate, r; (which is observed by all agents at time ¢). Consump-
tion smoothing accounts for the positive dependence of current out-
put demand on expected future output demand, while intertemporal
substitution implies the negative effect of the ex ante real interest
rate. The interest rate elasticity of output, o, corresponds to the
inverse of the coefficient of relative risk aversion in the consumers’
utility function.

The second building block of the model is a “Phillips curve”-
type equation, which derives from the optimal price-setting deci-
sion of monopolistically competitive firms under the assumption of
staggered price setting & la Calvo (1983),

Ty = ﬁEtﬂt+1 —+ KRT¢, (2)

where (3 is the time discount factor and «, the “slope” of the Phillips
curve, is related inversely to the degree of price stickiness.® Since
firms are unable to adjust prices optimally every period, whenever

It is important to note that, like in the studies cited in the introduction,
the objective here is a modest one, in that the only source of nonlinearity in
the model stems from the ZLB. Solving the fully nonlinear sticky-price model
with Calvo (1983) contracts can be a worthwile enterprise; however, it increases
the dimensionality of the computational problem by the number of states and
co-states that one should keep track of (e.g., the measure of price dispersion
and, in the case of optimal policy, the Lagrange multipliers associated with all
forward-looking constraints).

8In the underlying sticky-price model, the slope & is given by [(1+pe)] (1 —
0)(1 — B0)(c™* + ), where 0 is the fraction of firms that keep prices unchanged
in each period, ¢ is the (inverse) wage elasticity of labor supply, and ¢ is the
elasticity of substitution among differentiated goods.
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they have the opportunity to do so, they choose to price goods as a
markup over a weighted average of current and expected future mar-
ginal costs. Under appropriate assumptions on technology and pref-
erences, marginal costs are proportional to the output gap, resulting
in the above Phillips curve. Here this relation is assumed to hold
exactly, ignoring the so-called cost-push shock, which sometimes is
appended to generate a short-term trade-off between inflation and
output-gap stabilization.

The final building block models the behavior of the monetary
authority. The model assumes a “cashless-limit” economy in which
the instrument controlled by the central bank is the nominal interest
rate. One possibility is to assume a benevolent monetary policy-
maker seeking to maximize the welfare of households. In that case,
as shown in Woodford (2003), the problem can be cast in terms of
a central bank that aims to minimize (under discretion or commit-
ment) the expected discounted sum of losses from output gaps and
inflation, subject to the optimal behavior of households (1) and firms
(2), and the zero nominal interest rate floor:

Min Eo»  f'(nf + A7) (3)
13T, Tt =0
s.t. (1),(2)
¢ > 0, (4)

where A is the relative weight of the output gap in the central bank’s
loss function.”

An alternative way of modeling monetary policy is to assume that
the central bank follows some sort of simple decision rule that relates
the policy instrument, implicitly or explicitly, to other variables in

9 Arguably, Woodford’s (2003) approximation to the utility of the representa-
tive consumer is accurate to second order only in the vicinity of the steady state
with zero inflation. To the extent that the shock inducing a zero interest rate
pushes the economy far away from that steady state, the approximation error
could in principle be large. In that case, the welfare evaluation in section 7 can
be interpreted as a relative ranking of alternative policies based on an ad hoc
loss criterion, under the assumption that the central bank targets zero inflation.
Studying the welfare implication of different rules in the fully nonlinear model
lies outside the scope of this paper.
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the model. An example of such a rule, consistent with the zero floor,
is a truncated Taylor rule,

iy = max|[0, 7" + 7 + ¢ (m — ) + Ppxe], (5)

where r* is an equilibrium real rate, 7* is an inflation target, and

¢ and ¢, are response coefficients for inflation and the output gap.

To close the model, one needs to specify the behavior of the
natural real rate. In the fuller model, the latter is a composite of
a variety of real shocks, including shocks to preferences, govern-
ment spending, and technology. Following Woodford (2003), here
I assume that the natural real rate follows an exogenous mean-
reverting process,

A A (6)

where 77" = rj* — r* is the deviation of the natural real rate from
its mean, r*; ¢ are i.i.d. N(0,02) real shocks; and 0 < p < 1is a
persistence parameter.

The equilibrium conditions of the model therefore include the
constraints (1), (2), and either a set of first-order optimality con-
ditions (in the case of optimal policy) or a simple rule like (5). In
either case the resulting system of equations cannot be solved with
standard solution methods relying on local approximation because
of the non-negativity constraint on the nominal rate. Hence I solve
them with a global solution technique known as “collocation.” The
rational-expectations equilibrium with occasionally binding con-
straint is solved by way of parameterizing expectations (Christiano
and Fischer 2000) and is implemented with the MATLAB routines
developed by Miranda and Fackler (2002). The appendix outlines the
simulation algorithm, while the following sections report the results.

2.1 Baseline Calibration

The model’s parameters are chosen to be consistent with the “stan-
dard” Woodford (2003) calibration to the U.S. economy, which in
turn is based on Rotemberg and Woodford (1997) (table 1). Thus,
the slope of the Phillips curve (0.024), the weight of the output gap
in the central bank loss function (0.003), the time discount factor
(0.993), and the mean (3 percent per annum) and standard devia-
tion (3.72 percent) of the natural real rate are all taken directly from
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Table 1. Baseline Calibration (Quarterly Unless
Otherwise Stated)

Structural Parameters

Discount Factor I] 0.993
Real Interest Rate Elasticity of Output o 0.250
Slope of the Phillips Curve K 0.024
Weight of the Output Gap in Loss Function A 0.003
Natural Real-Rate Parameters

Mean (% per Annum) r* 3%
Standard Deviation (Annual) a(r™) 3.72%
Persistence (Quarterly) p 0.65
Simple Instrument Rule Coefficients

Inflation Target (% per Annum) " 0%
Coefficient on Inflation o 1.5
Coefficient on Output Gap o 0.5
Interest-Rate-Smoothing Coefficient i 0

Woodford (2003). The persistence (0.65) of the natural real rate is
assumed to be between the one used by Woodford (2003) (0.35)
and that estimated by Adam and Billi (2006) (0.8) using a more
recent sample period.!? The real interest rate elasticity of aggregate
demand (0.25)'! is lower than the elasticity assumed by Eggertsson
and Woodford (2003) (0.5), but as these authors point out, if any-
thing, a lower degree of interest sensitivity of aggregate expenditure
biases the results toward a more modest output contraction as a
result of a binding zero floor.'? In the simulations with simple rules,
the baseline target inflation rate (0 percent) is consistent with the
implicit zero target for inflation in the central bank’s loss function.

10These parameters for the shock process imply that the natural real interest
rate is negative about 15 percent of the time on an annual basis. This is slightly
more often than with the standard Woodford (2003) calibration (10 percent).

"This corresponds to a constant relative risk aversion of 4 in the underlying
model.

12With the Woodford (2003) value of this parameter (6.25), the model predicts
unrealistically large output shortfalls when the zero floor binds—e.g., an output
gap around —30 percent for values of the natural real rate around —3 percent.
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The baseline reaction coefficients on inflation (1.5), the output gap
(0.5), and the lagged nominal interest rate (0) are standard in the lit-
erature on Taylor (1993)-type rules. Section 8 studies the sensitivity
of the results to various parameter changes.

3. Discretionary vs. Commitment Policy

Since the seminal work of Kydland and Prescott (1977) and Barro
and Gordon (1983), the literature has focused on two (arguably
extreme) ways of dealing with problems in which agents’ expec-
tations of future policy actions affect their current behavior. One
is assuming full discretion, meaning that policymakers are unable
to make any promises about their own (or their successors’) future
actions. The alternative is to suppose that policymakers have free
access to a perfect commitment technology, which guarantees that
they will never default on any of their past promises. While these
two polar settings provide important insights into a wide vari-
ety of macroeconomic problems, their predictions sometimes differ
considerably.

This turns out to be so in the context of the zero-lower-bound
issue. In particular, this section shows that if the central bank cannot
make any credible promises about the future course of monetary pol-
icy, then the zero lower bound is invariably associated with deflation.
On the other hand, if the central bank is able to commit to the opti-
mal state-contingent policy, then hitting the zero lower bound need
not be associated with a falling price level, and may even result in
slightly positive inflation. Intuitively, by committing to future infla-
tion (once the zero lower bound ceases to bind), the central bank is
able to reduce the real interest rate and stimulate demand at times
when output is unusually low and the interest rate is constrained
by the zero floor. At the same time, forward-looking price-setting
behavior implies that some of the expected future inflation is built
into current pricing decisions, which may result in slightly positive
inflation even while the zero floor is binding. This way of affecting
behavior is just unavailable to a discretionary policymaker; there-
fore, in the discretion case the private sector correctly anticipates
that the zero lower bound will prevent the central bank from offset-
ting fully the effects of large-enough negative shocks on inflation.
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3.1 Optimal Discretionary Policy

Abstracting from the zero floor, the solution to the discretionary
optimization problem is well known (Clarida, Gali, and Gertler
1999).13 Under discretion, the central bank cannot manipulate the
beliefs of the private sector, and it takes expectations as given. The
private sector is aware that the central bank is free to reoptimize its
plan in each period; therefore, in a rational-expectations equilibrium,
the central bank should have no incentives to change its plans in an
unexpected way. In the baseline model with no endogenous state
variables, the discretionary policy problem reduces to a sequence of
static optimization problems in which the central bank minimizes
current-period losses by choosing the current inflation, output gap,
and nominal interest rate as a function only of the exogenous natural
real rate, r}.

The solution without zero bound then is straightforward: infla-
tion and the output gap are fully stabilized at their (zero) targets in
every period and state of the world, while the nominal interest rate
moves one-for-one with the natural real rate. This is depicted by the
dashed lines in figure 2. With this policy, the central bank is able to
achieve the globally minimal welfare loss of zero at all times.

With the zero floor, the basic problem of discretionary opti-
mization (without endogenous state variables) can still be cast as
a sequence of static problems. The period-t Lagrangian is given by

%(Wtz + Ax?) + d1e[ze — fre + o (i — far)]
+ QoM — Ky — B far] + P31y, (7)

where ¢1; is the Lagrange multiplier associated with the IS curve (1),
¢2¢ with the Phillips curve (2), and ¢3; with the zero constraint (4).
The functions f1; = Ey(zi41) and for = Ei(me41) are the private-
sector expectations that the central bank takes as given. Noticing
that ¢3; = —o ¢4, the Kuhn-Tucker conditions for this problem can
be written as

T + ¢2r = 0 (8)
Axy + ¢1p — Koy = 0 9)

131n this section, attention is restricted to Markov-perfect equilibria only.
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1t¢1e =0 (10)
it >0 (11)
$1¢ > 0. (12)

Substituting (8) and (9) into (10), and combining the result with
(1), (2), and (4), a Markov-perfect rational-expectations equilibrium
should satisfy

Tt — Etxt+1 + O'(it - EtTrtJrl - 7’?) =0 (13)
Tt — Ry — ﬁEtWt+1 =0 (14)
’L't()ﬂ?t + K,Tl't) =0 (15)
it >0 (16)
Azy + Kk < 0. (17)
Figure 2. Optimal Discretionary Policy with
Perfect Foresight
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Notice that (15) implies that the typical “targeting rule” involv-
ing inflation and the output gap is satisfied whenever the zero floor
on the nominal interest rate is not binding,

Axy + km = 0, (18)
if 4; > 0. (19)

However, when the zero floor is binding, from (13) the dynamics
are governed by

T+ opy — O'T‘{L = Etxt+1 + UEtthrl (20)
if iy = 0, (21)

where p; is the (log) price level. Notice that it is no longer pos-
sible to set inflation and the output gap to zero at all times, for
such a policy would require a negative nominal rate when the nat-
ural real rate falls below zero. Moreover, (20) implies that if the
natural real rate falls so that the zero floor becomes binding, then
since next period’s output gap and price level are independent of
today’s actions, for expectations to be rational, the sum of the cur-
rent output gap and price level must fall. The latter is true for
any process for the natural real rate that allows it to take negative
values.

An interesting special case, which replicates the findings of Jung,
Teranishi, and Watanabe (2005), is the case of perfect foresight. By
perfect foresight it is meant here that the natural real rate jumps
initially to some (possibly negative) value, after which it follows
a deterministic path (consistent with an AR(1) process) back to
its steady state. In this case, the policy functions are represented
by the solid lines in figure 2. As anticipated in the previous para-
graph, at negative values of the natural real rate, both the output
gap and inflation are below target. On the other hand, at posi-
tive levels of the natural real rate, prices and output can be sta-
bilized fully in the case of discretionary optimization with perfect
foresight. The reason for this is simple: once the natural real rate
is above zero, deterministic reversion to steady state ensures that
it will never be negative in the future. This means that it can
always be tracked one-for-one by the nominal rate (as in the case
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Figure 3. Optimal Discretionary Policy in the
Stochastic Case
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without zero floor), which is sufficient to fully stabilize prices and
output.

One of the contributions of this paper is to extend the analysis
in Jung, Teranishi, and Watanabe (2005) to the more general case
in which the natural real rate follows a stochastic AR(1) process.
Figure 3 plots the optimal discretionary policy in the stochastic
environment. Clearly, optimal discretionary policy differs in several
important ways, both from the optimal discretionary policy uncon-
strained by the zero floor and from the constrained perfect-foresight
solution.

First of all, given the zero floor, it is in general no longer optimal
to set either inflation or the output gap to zero in any period. In fact,
in the solution with zero floor, inflation falls short of the target at any
level of the natural real rate. This gives rise to a “deflationary bias”
of optimal discretionary policy—in other words, an average rate of
inflation below the target. Sensitivity analysis shows that for some
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plausible parameter values, the deflationary bias becomes quanti-
tatively significant.'* This implies that any quantitative analysis
of discretionary biases in monetary models that does not take into
account the zero lower bound can be misleading.

Secondly, as in the case of perfect foresight, at negative levels of
the natural real rate, both inflation and the output gap fall short
of their respective targets. However, the deviations from target are
larger in the stochastic case—up to 1.5 percentage points for the
output gap and up to 15 basis points for inflation at a natural real
rate of —3 percent. As we will see in the following section, the fall
of inflation under discretionary optimization is in contrast with the
case of commitment, when prices are much better stabilized and may
even slightly increase while the nominal interest rate is at its zero
lower bound.

Third, above a positive threshold for the natural real rate,
the optimal output gap becomes positive, peaking at around
+0.5 percent.

Finally, at positive levels of the natural real rate, the optimal
nominal interest rate policy with zero floor is both more expan-
sionary (i.e., prescribing a lower nominal rate) and more aggressive
(i.e., steeper) compared with the optimal discretionary policy with-
out zero floor.'® As a result, the nominal rate hits the zero floor at
levels of the natural real rate as high as 1.8 percent (and is constant
at zero for lower levels of the natural real rate).

These results hinge on two factors: (i) the nonlinearity induced
by the zero floor and (ii) the stochastic nature of the natural real
rate. The combined effect is an asymmetry in the ability of the cen-
tral bank to respond to positive versus negative shocks when the
natural real rate is close to zero. Namely, while the central bank
can fully offset any positive shocks to the natural real rate because
nothing prevents it from raising the nominal rate by as much as is
necessary, it cannot fully offset large-enough negative shocks. The
most it can do in this case is to reduce the nominal rate to zero,
which is still higher than the rate consistent with zero output gap

MFor example, the deflationary bias becomes half a percentage point with
p = 0.8 and r* = 2 percent.

5 This is also true when the optimal nominal interest rate policy is compared
with the optimal discretionary policy with zero floor and perfect foresight.
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and inflation. Taking private-sector expectations as given, the lat-
ter implies a higher than desired real interest rate, which depresses
output and prices through the IS and Phillips curves.

At the same time, when the natural real rate is close to zero,
private-sector expectations reflect the asymmetry in the central
bank’s problem: a positive shock in the following period is expected
to be neutralized, while an equally probable negative one is expected
to take the economy into a liquidity trap. This gives rise to a “defla-
tionary bias” in expectations, which in a forward-looking economy
has an immediate impact on the current evolution of output and
prices. Absent an endogenous state, the current evolution of the
economy is all that matters today, and so it is rational for the cen-
tral bank to partially offset the depressing effect of expectations
on today’s outcome by more aggressively lowering the nominal rate
when the risk of deflation is high.

At sufficiently high levels of the natural real rate, the proba-
bility for the zero floor to become binding converges to zero. In
that case, optimal discretionary policy approaches the unconstrained
one—namely, zero output gap and inflation and a nominal rate equal
to the natural real rate. However, around the deterministic steady
state, the differences between the two policies—with and without
zero floor—remain significant.

Since in the baseline model the discretionary optimization prob-
lem is equivalent to a sequence of static problems, optimal discre-
tionary policy is independent of history. This means that it is only
the current risk of falling into a liquidity trap that matters for cur-
rent policy, regardless of whether the economy is approaching a lig-
uidity trap or has just exited one. This is in sharp contrast with the
optimal policy under commitment, which involves a particular type
of history dependence, as will become clear in the following section.

3.2 Optimal Commaitment Policy

In the absence of the zero lower bound, the equilibrium outcome
under optimal discretion is globally optimal, and therefore it is
observationally equivalent to the outcome under optimal commit-
ment policy. The central bank manages to stabilize fully inflation
and the output gap while adjusting the nominal rate one-for-one
with the natural real rate.
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However, this observational equivalence no longer holds in the
presence of a zero interest rate floor. While full stabilization under
either regime is not possible, important gains can be obtained from
the ability to commit to future policy. In particular, by committing
to deliver inflation in the future, the central bank can affect private-
sector expectations about inflation, and thus the real rate, even
when the nominal interest rate is constrained by the zero floor. This
channel of monetary policy is simply unavailable to a discretionary
policymaker.

Using the same Lagrange method as before, but this time taking
into account the dependence of expectations on policy choices, it is
straightforward to obtain the equilibrium conditions that govern the
optimal commitment solution:

e — Erxeyq + a(it — Eymiq — rf) =0 (22)
e — kg — BBy =0 (23)

T — $11-10/B + G2t — 21 =0 (24)
AT+ d1p — Pre-1/8 — Koy = 0 (25)

itd1t =0 (26)

it >0 (27)

¢1t > 0. (28)

From conditions (24) and (25), it is clear that the Lagrange mul-
tipliers inherited from the past period will have an effect on current
policy. They in turn will depend on the history of endogenous vari-
ables and in particular on whether the zero floor was binding in the
past. In this sense, the Lagrange multipliers summarize the effect
of commitment, which (in contrast to optimal discretionary policy),
involves a particular type of history dependence.

Figures 4-6 plot the optimal policies in the case of commitment.
The figures illustrate specifically the dependence of policy on ¢14_1,
the Lagrange multiplier associated with the zero floor, while hold-
ing ¢o;_1 fixed. When the nominal interest rate is constrained by
the zero floor, ¢1 becomes positive, implying that the central bank
commits to a lower nominal rate, higher inflation, and higher output
gap in the following period, conditional on the value of the natural
real rate.
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Figure 4. Optimal Commitment Policy (Inflation)
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Figure 6. Optimal Commitment Policy (Nominal
Interest Rate)

Since the commitment is assumed to be credible, it enables the
central bank to achieve higher expected inflation and a lower real
rate in periods when the nominal rate is constrained by the zero floor.
The lower real rate reinforces expectations for higher future output
and thus further stimulates current output demand through the IS
curve. This, together with higher expected inflation, stimulates cur-
rent prices through the expectational Phillips curve. Commitment
therefore provides an additional channel of monetary policy, which
works through expectations and through the ex ante real rate, and
which is unavailable to a discretionary monetary policymaker.

A standard way to illustrate the differences between optimal dis-
cretionary and commitment policies is to compare the dynamic evo-
lution of endogenous variables under each regime in response to a
single shock to the exogenous natural real rate. Figures 7 and 8 plot
the impulse responses to a small and a large negative shock to the
natural real rate, respectively. In figure 7, notice that in the case
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Figure 7. Impulse Responses to a Small Shock:
Commitment vs. Discretion
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Figure 8. Impulse Responses to a Large Shock:
Commitment vs. Discretion
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of a small shock to the natural real rate from its steady state of
3 percent down to 2 percent, inflation and the output gap under
optimal commitment policy (lines with circles) remain almost fully
stabilized. In contrast, under discretionary optimization (lines with
squares), inflation stays slightly below target and the output gap
remains about half a percentage point above target, consistent with
equation (18), as the economy converges back to its steady state.
The nominal interest rate under discretion is about 1 percent lower
than the rate under commitment throughout the simulation, yet it
remains strictly positive at all times.

The picture changes substantially in the case of a large nega-
tive shock to the natural interest rate to —3 percent (see figure 8).
Notably, under both commitment and discretion, the nominal inter-
est rate hits the zero lower bound and remains there until two quar-
ters after the natural interest rate has returned to positive.'® Under
discretionary optimization, both inflation and the output gap fall
on impact, consistent with equation (20), after which they converge
toward their steady state. The initial shortfall is significant, espe-
cially for the output gap, amounting to about 1.5 percent. In con-
trast, under the optimal commitment rule, the initial output loss and
deflation are much milder, owing to the ability of the central bank
to commit to a positive output gap and inflation once the natural
real rate has returned to positive.

An alternative way to compare optimal discretionary and com-
mitment policies in the stochastic environment is to juxtapose
the dynamic paths that they prescribe for endogenous variables
under a chosen evolution for the stochastic natural real rate.!” The
experiment is shown in figure 9, which plots a simulated “liquid-
ity trap” under the two regimes. The line with triangles in the
bottom panel is the assumed evolution of the natural real rate.
It slips down from +3 percent (its deterministic steady state) to
—3 percent over a period of fifteen quarters, then remains at —3

16The fact that the zero-interest-rate policy terminates in the same quarter
under commitment and under discretion is a coincidence in this experiment. The
relative duration of a zero-interest-rate policy under commitment versus discre-
tion depends on the parameters of the shock process as well as the particular
realization of the shock.

In the model, agents observe only the current state; i.e., the future evolution
of the natural real rate is unknown to them in this experiment.
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Figure 9. Optimal Paths in a Liquidity
Trap—Commitment vs. Discretion
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percent for ten quarters before recovering gradually (consistent
with the assumed AR(1) process) to +3 percent in another fifteen
quarters.

The top and middle panels of figure 9 show the responses of
inflation and the output gap under each of the two regimes. Not
surprisingly, under the optimal commitment regime, both infla-
tion and the output gap are closer to target than under the opti-
mal discretionary policy. In particular, under optimal discretion,
inflation is always below the target as it falls to —0.15 percent,
shadowing the drop in the natural real rate. Compared to that,
under optimal commitment, prices are almost fully stabilized, and
in fact they even slightly increase while the natural real rate is
negative!

In turn, under optimal discretion the output gap is initially
around +0.4 percent, but then it declines sharply to —1.6 percent
with the decline in the natural real rate. In contrast, under optimal
commitment, output is initially at its potential level and the largest
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negative output gap is only half the size of the one under optimal
discretion.

Supporting these paths of inflation and the output gap are
corresponding paths for the nominal interest rate. Under discre-
tionary optimization, the nominal rate starts at around 2 percent
and declines at an increasing rate until it hits zero two quarters
before the natural real rate has turned negative. It is then kept at
zero while the natural real rate is negative, and only two quarters
after the latter has returned to positive territory does the nomi-
nal interest rate start rising again. Nominal rate increases following
the liquidity trap mirror the decreases while approaching the trap,
so that the tightening is more aggressive in the beginning and then
gradually diminishes as the nominal rate approaches its steady state.

In contrast, the nominal rate under optimal commitment begins
closer to 3 percent, then declines to zero one quarter before the
natural real rate turns negative. After that, it is kept at its zero
floor until three quarters after the recovery of the natural real rate
to positive levels, which is one quarter longer compared with opti-
mal discretionary policy. Interestingly, once the central bank starts
increasing the nominal rate, it raises it very quickly; the nominal
rate climbs nearly 3 percentage points in just two quarters. This is
equivalent to six consecutive monthly increases by 50 basis points
each. The reason is that once the central bank has validated the
inflationary expectations (which help mitigate deflation during the
liquidity trap), there is no more incentive to keep inflation above
target when the natural interest rate has returned to normal.

Under discretion, the paths of inflation, output, and the nomi-
nal rate are symmetric with respect to the midpoint of the simula-
tion period because optimal discretionary policy is independent of
history. Therefore, inflation and the output gap inherit the dynamics
of the natural real rate, the only state variable on which they depend.
This is in contrast with the asymmetric paths of the endogenous
variables under commitment, reflecting the optimal history depen-
dence of policy under this regime. In particular, the fact that under
commitment the central bank can promise higher output gap and
inflation in the wake of a liquidity trap is precisely what allows it to
engage in less preemptive easing of policy in anticipation of the trap
and at the same time deliver a superior inflation and output-gap
performance compared with the optimal policy under discretion.
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4. Suboptimal Rules with Zero Floor

4.1 Targeting Rules

In the absence of the zero floor, targeting rules take the form
CUﬂ-Etﬂ't_A,_j + CkmEtl't+k + OéiEtit+l =T, (29)

where o, a,, and «; are weights assigned to the different objec-
tives; j, k, and [ are forecasting horizons; and 7 is the target. These
are sometimes called flezible inflation-targeting rules to distinguish
them from strict inflation targeting of the form Fym y; = 7.8 When
j, k, or [ > 0, the rules are called inflation forecast targeting to
distinguish them from rules targeting contemporaneous variables.

As demonstrated by (20) in section 3, in general, such rules are
not consistent with equilibrium in the presence of the zero floor, for
they would require negative nominal interest rates at times. A nat-
ural way to modify targeting rules so that they comply with the zero
floor is to write them as a complementarity condition,

Z't(Oéﬂ—Etﬂ't+j + OémEt{IZtJrk + aiEtit+l — T) =0 (30)

which requires that either the target 7 is met or the nominal inter-
est rate must be at its zero floor. In this sense, a rule like (30)—(31)
can be labeled “flexible inflation targeting with a zero-interest-rate
floor.”

In fact, section 3 showed that the optimal policy under discre-
tion takes this form with o; =0, ar = Kk, a, = A, j =k =0, and
7 = 0—namely,

it<)\$t + Hﬂ't) =0 (32)
iy > 0. (33)

In the absence of the zero floor, it is well known that opti-
mal commitment policy can be formulated as optimal speed-limit

8Notice that the zero lower bound implies that strict inflation targeting is
simply not feasible: from the New Keynesian Phillips curve, m; = C implies
z¢ = C(1 — ) at all times, and the IS equation is not satisfied for large-enough
negative shocks to ri'.
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targeting,

Axt + ;ﬂt = 0, (34)
where Az = Ay, —Ay{'®" is the growth rate of output relative to the
growth rate of flexible-price output (the speed limit). In contrast to
discretionary optimization, however, the optimal commitment rule
with zero floor cannot be written in the form (30)—(31). This is
because, with zero floor, the optimal target involves a particular
type of history dependence, as shown by Eggertsson and Woodford
(2003).1 In particular, manipulating the first-order conditions of
the optimal commitment problem, one can arrive at the following
speed-limit targeting rule with zero floor:

th |:A.’L't + ;'ﬂ't — % (liU; B

1
B

¢1t—1 - let + A¢1t_1>:| =0 (35)

i >0. (36)

Since ko is small and ( is close to one, and for plausible values
of ¢1; consistent with the assumed stochastic process for the natural
real rate,?? the above rule is approximately the same as

. K
1t [Ayt + X’ﬂ't — T¢| = 0 (37)

where 7, & Ay{ tew 4 A"1A2¢q, is a history-dependent target (speed
limit). In normal circumstances when ¢1; = ¢1¢1-1 = ¢1:—2 = 0, the
target is equal to the growth rate of flexible-price output, as in the
problem without zero bound; however, if the economy falls into a lig-
uidity trap, the speed limit is adjusted in each period by the speed
of change of the penalty (the Lagrange multiplier) associated with
the non-negativity constraint. The faster the economy is plunging
into the trap, therefore, the higher is the speed-limit target that the

¥These authors derive the optimal commitment policy in the form of a mov-
ing price-level targeting rule. Alternatively, it can be formulated as a moving
speed-limit targeting rule as demonstrated here.

20¢1t is two orders of magnitude smaller than the natural real rate.
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central bank promises to achieve contingent on the interest rate’s
return to positive territory.

While the above rule is optimal in this framework, it is perhaps
not very practical. Its dependence on the unobservable Lagrange
multipliers makes it very hard, if not impossible, to implement or
communicate to the public. Moreover, as pointed out by Eggertsson
and Woodford (2003), credibility might suffer if all that the pri-
vate sector observes is a central bank that persistently undershoots
its target yet keeps raising it for the following period. To overcome
some of these drawbacks, Eggertsson and Woodford (2003) propose
a simpler constant price-level targeting rule, of the form

. K
(2 |:xt + Xpt} =0

iy >0, (39)

where p; is the log price level.?!

The idea is that committing to a price-level target implies that
any undershooting of the target resulting from the zero floor is going
to be undone in the future by positive inflation. This raises private-
sector expectations and eases deflationary pressures when the econ-
omy is in a liquidity trap. Figure 10 demonstrates the performance
of this simpler rule in a simulated liquidity trap. Notice that while
the evolution of the nominal rate and the output gap is similar to
that under the optimal discretionary rule, the path of inflation is
much closer to the target. Since the weight of inflation in the cen-
tral bank’s loss function is much larger than that of the output gap,
the fact that inflation is better stabilized accounts for the superior
performance of this rule in terms of welfare.

4.2 Simple Instrument Rules

The practical difficulties with communicating and implementing
rules like (35) or even (39) have led many researchers to focus on
simple instrument rules of the type proposed by Taylor (1993). These
rules have the advantage of postulating a relatively straightforward

ZINotice that the weight on the price level is optimal within the class of con-
stant price-level targeting rules. In particular, it is related to xK/A = €, the degree
of monopolistic competition among intermediate goods producers.
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Figure 10. Dynamic Paths under Constant
Price-Level Targeting

0<05 T T T T T - T ~ T T

0OF -t o-0-0-0-0-0-0-0-0-0-u-00 —e— Gomm]t =
. Price targ.
i, 5 o -
-3k 1 1 1 1 T =
1 5 10 15 20 25 30 35 40

Quarters

relationship between the nominal interest rate and a limited set of
variables in the economy. While the advantage of these rules lies in
their simplicity, at the same time—absent the zero floor—some of
them have been shown to perform close enough to the optimal rules
in terms of the underlying policy objectives (Gali 2003). Hence, it
has been argued that some of the better simple instrument rules may
serve as a useful benchmark for policy, while facilitating communi-
cation and transparency.

In most of the existing literature, however, simple instrument
rules are specified as linear functions of the endogenous variables.
This is, in general, inconsistent with the existence of a zero floor
because for large-enough negative shocks (e.g., to prices), linear
rules would imply a negative value for the nominal interest rate.
For instance, a simple instrument rule reacting only to past period’s
inflation,

it =1+ 7"+ (Mo — 77, (40)
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where r* is the equilibrium real rate, 7* is the target inflation rate,

and ¢, is an inflation response coefficient, can clearly imply negative
values for the nominal rate.

In the context of liquidity trap analysis, a natural way to modify
simple instrument rules is to truncate them at zero with the max(-)
operator. For example, the truncated counterpart of the above Tay-
lor rule can be written as

iy = max[0, 7" + 7 + Pp(m_1 — 7)) (41)

In what follows, I consider several types of truncated instrument
rules, including the following;:

e Truncated Taylor rules (TTRs) that react to past, contem-
poraneous, or expected future values of the output gap and
inflation (j € {—1,0,1}),

it TR = max(0, 7" + 7 + ¢ (Bymigj — %) + da(Brmey )] (42)

e TTRs with partial adjustment or “interest rate smoothing”
(TTRSSs),

{TTRS — max {0, giip—1 + (1 - qbi)itTTR} (43)

e TTRs that react to the price level instead of inflation
(TTRPs),

iTTRE — max[0,r* + ¢r(pr — D°) + doy] (44)

where p; is the log price level and p* is a constant price-level
target; and

e Truncated “first-difference” rules (TFDRs) that specify the
change in the interest rate as a function of the output gap
and inflation,

it FPR = max(0,ii—1 + ¢u(m — 7°) + dpwy].  (45)
This formulation ensures that if the nominal interest rate ever
hits zero, it will be held there as long as inflation and the
output gap are negative, thus extending the duration of a
zero-interest-rate policy relative to a truncated Taylor rule.
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e The “augmented Taylor rule” (ATR) of Reifschneider and
Williams (2000),

iR — max [0, iR aZ,] (46)
iTR = o 4 G (mp — ) + (47)
Zt - th]_ + (i?TR - ZtTR) (48)

This last rule keeps track of the amount by which the interest
rate was higher than an unconstrained Taylor rule due to a bind-
ing zero lower bound, and allows for a compensating lower nominal
interest rate once the natural real rate has returned to positive lev-
els. Reifschneider and Williams (2000) simulate a stochastic econ-
omy with this policy (under the assumption of certainty equivalence)
and show that it improves performance substantially compared with
the standard Taylor rule. The augmented Taylor rule is interesting
also because it is thought to have influenced the conduct of mone-
tary policy in the United States during the 2003—05 episode when
announcements by Federal Reserve Chairman Alan Greenspan sug-
gested a “considerable period” of low interest rates, followed by a
“measured pace” of interest rate increases.??

As before, I illustrate the performance of each family of sim-
ple instrument rules by simulating a liquidity trap and plotting the
implied paths of endogenous variables under each regime. In addi-
tion, I contrast the performance of optimal commitment policy to the
augmented rule of Reifschneider and Williams (2000), assuming that
the Federal Reserve followed their rule in the period since 2001:Q3.
The more rigorous evaluation of welfare of alternative policies is
reserved for the following section.

Given the model’s simplicity, the focus here is not on finding
the optimal values of the parameters within each class of rules but
rather on evaluating the performance of alternative monetary policy
regimes. To do that I use values of the parameters commonly esti-
mated and widely used in simulations in the literature. I make sure
that the parameters satisfy a sufficient condition for local uniqueness
of equilibrium. Namely, the parameters are required to observe the

221 thank the editor John Taylor for pointing this out to me and suggesting
the additional exercise with the Reifschneider and Williams (2000) rule.
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so-called Taylor principle, according to which the nominal interest
rate must be adjusted more than one-to-one with changes in the
rate of inflation, implying ¢, > 1. I further restrict ¢, > 0 and
0<¢; <08.

Figure 11 plots the dynamic paths of inflation, the output gap,
and the nominal interest rate that result under regimes TTR and
TTRP, conditional on the same path for the natural real rate as
before. Both the truncated Taylor rule (TTR, lines with squares)
and the truncated rule responding to the price level (TTRP, lines
with circles) react contemporaneously with coefficients ¢, = 1.5 and
¢, = 0.5, and 7 = 0.

Several features of these plots are worth noticing. First of all,
and not surprisingly, under the truncated Taylor rule, inflation, the
output gap, and the nominal rate inherit the behavior of the natural
real rate. Perhaps less expected, though, while both inflation and
especially the output gap deviate further from their targets com-
pared with the optimal rules in figure 9, the nominal interest rate

Figure 11. Truncated Taylor Rules Responding to the
Price Level or to Inflation
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always stays above 1 percent, even when the natural real rate falls as
low as —3 percent! This suggests that—contrary to popular belief—
an equilibrium real rate of 3 percent may provide a sufficient buffer
from the zero floor even with a truncated Taylor rule targeting zero
inflation.

Secondly, figure 11 demonstrates that in principle the central
bank can do even better than a TTR by reacting to the price level
rather than to the rate of inflation. The reason for this is clear—by
committing to react to the price level, the central bank promises
to undo any past disinflation by higher inflation in the future. As a
result, when the economy is hit by a negative real-rate shock, current
inflation falls by less because expected future inflation increases.

Figure 12 plots the dynamic paths of endogenous variables under
regimes TTRS and TFDR, again with ¢, = 1.5, ¢, = 0.5, and
7% = 0. The TTRS (lines with circles) is a partial adjustment ver-
sion of the TTR, with smoothing coefficient ¢; = 0.8. The TFDR

Figure 12. Truncated Taylor Rule with Smoothing vs.
Truncated First-Difference Rule
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(lines with squares) is a truncated first-difference rule that implies
more persistent deviations of the nominal interest rate from its
steady-state level.

The figure suggests that interest rate smoothing (TTRS) may
improve somewhat on the truncated Taylor rule (TTR) and may do
a bit worse than the rule reacting to the price level (TTRP). How-
ever, it implies the least instrument volatility. On the other hand,
the truncated first-difference rule (TFDR) seems to be doing an even
better job at stabilization in a liquidity trap. Notice that under this
rule, the nominal interest rate deviates most from its steady state,
hitting zero for five quarters. Interestingly, the paths for inflation
and the output gap under the TFDR resemble, at least qualitatively,
those under the optimal commitment policy, suggesting that this rule
may be approximating the optimal history dependence of policy.

Finally, figure 13 contrasts the liquidity trap performance of
the “augmented Taylor rule” (ATR) of Reifschneider and Williams
(2000) to that of the optimal commitment policy. With o = 0, the

Figure 13. Dynamic Paths: Augmented Taylor Rule vs.
Optimal Commitment Policy
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ATR is the same as the standard Taylor rule. Since we have seen in
figure 11 that with response coefficients ¢, = 1.5 and ¢, = 0.5 the
nominal interest rate under the Taylor rule remains positive even as
the natural real rate falls to —3 percent, in this particular exercise we
assume that the natural real rate falls much more (to -9 percent)
so as to allow the mechanism of the Reifschneider and Williams
(2000) rule to kick in. The figure shows that, in that case, with
a = 1/2, the augmented rule implies a zero nominal interest rate for
one additional quarter and a lower nominal interest rate compared
to the TTR during five quarters. Notice, however, that since under
the ATR the zero-interest-rate policy is terminated later, and even-
tually the interest rate must converge to the standard Taylor rule,
the pace of interest rate increases is faster than that of the standard
TTR. This is even more pronounced with e = 1, in which case the
interest rate is kept at zero two additional quarters but then is raised
very rapidly and converges to the TTR in just two quarters.

The top and middle panels of the figure show, not surprisingly,
that the augmented rules with oo = 1/2 (lines with crosses) or ao = 1
(lines with squares) achieve better stabilization outcomes than the
standard TTR (dashed lines). Interestingly, though, the paths of
inflation and the output gap almost overlap with o =1/2 or av = 1,
suggesting that—within this class of rules and provided that « is
positive—the particular time profile of the extra easing of policy is
not so important.

What seems to make a big difference in a liquidity trap situation,
however, is the total amount of easing following the recovery of the
natural real rate. This can be seen by contrasting the inflation and
output-gap performance of the ATR with that of the optimal com-
mitment rule (lines with circles). Under the optimal commitment
policy, the nominal interest rate is kept at zero for as much as seven
quarters more than the standard Taylor rule, and five quarters more
than the ATR with o = 1. After that, as already noted in section
3.2, the interest rate is raised very rapidly to +3 percent in just two
quarters, much faster than the TTR and even than the ATR with
a=1.

Figure 14 illustrates this point in the context of the recent U.S.
experience. The line with squares plots the end-of-quarter actual fed-
eral funds rate from 2001:Q3 (right after September 11) to 2008:Q1.
The line with triangles is the implied path of the natural real interest
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Figure 14. The Recent U.S. Episode: Actual Federal
Reserve Policy, Implied Natural Real Rate, and Optimal
Commitment Policy
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rate, assuming that actual Federal Reserve policy followed the aug-
mented Taylor rule of Reifschneider and Williams (2000). And the
line with circles is the optimal commitment policy, given the imputed
path of the exogenous natural real rate. The contrast between the
two policies is quite clear: through the lens of the standard three-
equation monetary policy model, the “considerable period” of low
interest rates ended “too soon” (the federal funds rate was kept at
1 percent during four quarters), while the subsequent “measured
pace” of interest rate increases was much “too slow.”
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In particular, according to our model, a policymaker following
the optimal commitment policy would have set the nominal interest
rate to zero for fifteen quarters (from 2001:Q4 through 2005:Q2),
followed by an aggressive closing of the gap between the actual and
the natural rate of interest in a single quarter. This policy would
have essentially stabilized prices and would have resulted in only
a modest and short-lived output boom (output above the natural
level) between 2004:Q3 and 2005:Q2. In comparison, under the aug-
mented Taylor rule, inflation and the output gap both were much
lower than the target between 2001:Q4 and 2004:Q4, and then much
higher than the target between 2005:Q3 and 2007:Q2. This stark
contrast between the performance of the two rules may be inter-
preted as a caveat to the advisability of “measured pace” of interest
rate increases following a liquidity trap. What optimal policy seems
to dictate instead is the creation of expectations (and subsequent
delivery) of a zero nominal interest rate during a prolonged period,
followed by a rapid catch-up with a more normal policy stance once
the economy has recovered and a zero interest rate is no longer
needed.

As a final qualification, it is important to keep in mind that the
simulations in figures 9-13 are conditional on one particular path for
the natural real rate. It is, of course, possible that a suboptimal rule
that appears to perform well while the economy is in a liquidity trap
turns out to perform badly on average. In the following section, 1
undertake the ranking of alternative rules according to an uncondi-
tional expected welfare criterion, which takes into account the sto-
chastic nature of the economy, time discounting, and the relative
cost of inflation vis-a-vis output-gap fluctuations.

5. Welfare Ranking of Alternative Rules

A natural criterion for the evaluation of alternative monetary pol-
icy regimes is the central bank’s loss function. Woodford (2003)
shows that under appropriate assumptions the latter can be derived
as a second-order approximation to the utility of the representa-
tive consumer in the underlying sticky-price model.?> Rather than

23See footnote 9.
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normalizing the weight of inflation to one, I normalize the loss func-
tion so that utility losses arising from deviations from the flexible-
price equilibrium can be interpreted as a fraction of steady-state
consumption,

WL = U 7E02ﬁt (1+pe)¢ 7 + (07! + p)a?] (49)

= %e(l —HOE)C_lEoZﬁtLt’ (50)

where ¢ = 071(1 — 0)(1 — 86); 6 is the fraction of firms that keep
prices unchanged in each period; ¢ is the (inverse) elasticity of labor
supply; and ¢ is the elasticity of substitution among differentiated
goods. Notice that (c71 + ¢)[e(1 + ¢e)]71¢ = /e = X implies the
last equality in the above expression, where L; is the central bank’s
period loss function, which is being minimized in (3).

I rank alternative rules on the basis of the unconditional expected
welfare. To compute it, I simulate 2,000 paths for the endogenous
variables over 1,000 quarters and then compute the average loss per
period across all simulations. For the initial distribution of the state
variables, I run the simulation for 200 quarters prior to the evalu-
ation of welfare. Table 2 ranks all rules according to their welfare
score. It also reports the volatility of inflation, the output gap, and
the nominal interest rate under each rule, as well as the frequency
of hitting the zero floor.

Table 2. Properties of Optimal and Simple Rules with
Zero Floor

OCP PLT | TFDR | ODP TTRP TTRS ATR | TTR

std(m) X 102 1.04 3.47 4.59 3.85 7.23 9.12 12.8 12.9
std(z) 0.45 0.69 1.04 0.71 1.61 1.91 1.89 1.90
std(z) 3.21 3.20 1.36 3.27 1.06 0.56 1.14 1.14
Loss x 10° 6.97 10.9 52.3 54.2 62.9 103 146 147
Loss/OCP 1 1.56 7.50 7.77 9.01 14.8 20.95 21.09

Pr(i =0)% 32.6 32.0 1.29 36.8 0.24 0.00 0.48 0.44
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One thing to keep in mind in evaluating the welfare losses is that
in the benchmark model with nominal price rigidity as the only dis-
tortion and a shock to the natural real rate as the only source of
fluctuations, absolute welfare losses are quite small—typically less
than 1/100 of a percent of steady-state consumption for any sensible
monetary policy regime.?* Therefore, the focus here is on evaluating
rules on the basis of their welfare performance relative to that under
the optimal commitment rule with zero floor.

In particular, in terms of unconditional expected welfare, the opti-
mal discretionary policy (ODP) delivers losses that are nearly eight
times larger than the ones achievable under the optimal commitment
policy (OCP). Recall that abstracting from the zero floor and in the
absence of shocks other than to the natural real rate, the outcome
under discretionary optimization is the same as under the optimal
commitment rule. Hence, the cost of discretion is substantially under-
stated in analyses that ignore the existence of the zero lower bound
on nominal interest rates. Moreover, conditional on the economy’s
fall into a liquidity trap, the cost of discretion is even higher.

Interestingly, the frequency of hitting the zero floor is quite
high—around one-third of the time—under the optimal commitment
policy, as well as under the optimal discretionary policy. This result
is sensitive to the assumption that the central bank targets zero
inflation in the long run. If instead the central bank targeted a rate
of inflation of 2 percent, the frequency of hitting the zero floor would
decrease to around 12 percent of the time. The latter is still much
higher than what has been observed in the United States (or even
in Japan) and suggests either that policy has not been conducted
optimally (note that the frequency is much lower under the simple
instrument rules) or that there may be other unmodeled costs asso-
ciated with low or volatile interest rates, unrelated to the ability
of the central bank to achieve its inflation and output-gap targets.
Indeed, in the model presented, hitting the zero lower bound is desir-
able because commitment to a zero-interest-rate policy is precisely
what enables the central bank to achieve inflation and output-gap
paths closer to the targets.

24To be sure, output gaps in a liquidity trap are considerable; however, the
output gap is attributed negligible weight in the central bank loss function of the
benchmark model.
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Table 2 further confirms Eggertsson and Woodford’s (2003) intu-
ition about the desirable properties of an (optimal) constant price-
level targeting rule (PLT)—here losses are only 56 percent greater
than those under the optimal commitment rule. It also involves
hitting the zero floor around one-third of the time.

In contrast, losses under the truncated first-difference rule
(TFDR) are 7.5 times as large as those under the optimal commit-
ment rule. Interestingly, however, the TFDR narrowly outperforms
optimal discretionary policy. Even though the implied volatility of
inflation and the output gap is slightly higher under this rule, it
does a better job than ODP at keeping inflation and the output gap
closer to target on average. This is possibly related to the highly iner-
tial nature of this rule. An additional advantage—albeit one that is
not reflected in the benchmark welfare criterion—is that instrument
volatility is less than half of that under any of the optimal policies.
This is why the zero floor is hit only around 1.3 percent of the time
under this rule.

Similarly, losses under the truncated Taylor rule reacting to the
price level (TTRP) are nine times larger than under OCP but only
slightly worse than optimal discretionary policy. Moreover, instru-
ment volatility under this rule is smaller than under the TFDR,
which is why it involves hitting the zero floor even more rarely—only
one quarter every 100 years on average.

Not surprisingly, the rule with the least instrument volatility
among the studied simple rules—less than one-fifth of that under
OCP—is the truncated Taylor rule with smoothing (TTRS). As a
consequence, under this rule the nominal interest rate virtually never
hits the zero lower bound. However, welfare losses are almost fifteen
times larger than under OCP.

Finally, under the simplest truncated Taylor rule (TTR) without
smoothing, the zero lower bound is hit only two quarters every 100
years, while welfare losses are around twenty times larger than those
under OCP. Nevertheless, even under this simplest rule, losses are
very small in absolute terms.

The fact that the zero lower bound is hit so rarely under the stan-
dard truncated Taylor rule (as well as under the other considered
simple instrument rules) explains why the expected welfare gains
of following the augmented Taylor rule (ATR) are negligible in our
setup: the zero floor binds so rarely that the mechanism of additional
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easing embedded in the augmented rule is triggered only once every
100 years or so. It also suggests that the zero constraint plays a minor
role for unconditional expected welfare under many sensible simple
instrument rules. Indeed, computing their welfare score without the
zero floor (by removing the maximum operator), reveals that close
to 99 percent of the welfare losses associated with the five simple
instrument rules stem from their intrinsic suboptimality rather than
from the zero floor per se. Put differently, if one reckons that the
stabilization properties of a standard Taylor rule are satisfactory in
an environment in which nominal rates can be negative, then adding
the zero lower bound to it leaves unconditionally expected welfare
virtually unaffected. Nevertheless, as was illustrated in the previ-
ous section, conditional on a sufficiently negative evolution of the
natural real rate, the losses associated with most of the studied sim-
ple instrument rules are substantially higher relative to the optimal
commitment policy.

6. Sensitivity Analysis

In this section, I analyze the sensitivity of the main findings with
respect to the parameters of the shock process, the strength of reac-
tion and the timing of variables in truncated Taylor-type rules, and
an extension of the model with endogenous inflation persistence.

6.1 Parameters of the Natural Real-Rate Process

6.1.1 Larger Variance

Table 3 reports the effects of an increase of the standard devia-
tion of r™ to 4.5 percent (a 20 percent increase), while keeping the

Table 3. Properties of Selected Rules with Higher std(r"™)

oCP ODP TTR
std(r™) 4.46 4.46 4.46
std () x1.52 x1.50 x1.20
std(z) x1.46 x1.45 x1.20
std(i) x1.14 x1.14 x1.19
Loss x2.12 x2.60 x1.42
Pr(i = 0)% x1.23 x1.19 x3.24
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persistence constant, under three alternative regimes—optimal com-
mitment policy, discretionary optimization, and a truncated Taylor
rule.

Under OCP, the zero floor is hit around 23 percent more often,
while welfare losses more than double. Figure 15 shows that the
higher volatility implies that both the preemptive easing of policy
and the commitment to future loosening are somewhat stronger. In
turn, figure 16 shows that under ODP, preemptive easing is much
stronger and the deflation bias is larger; table 3 shows that welfare
losses increase by a factor of 2.6. Finally, under the TTR, the zero
floor is hit three times more often, while welfare losses are up by
40 percent.

6.1.2 Stronger Persistence of Shocks

Table 4 and figures 17-19 show the effect of an increase in the per-
sistence of shocks to the natural real rate to 0.8, while keeping the
variance of " unchanged.

Figure 15. Sensitivity of OCP to o(r")
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Figure 16. Sensitivity of ODP to o(r™)
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Under OCP (figure 17), preemptive easing is a bit stronger, while
future monetary loosening is much more prolonged. As a result of
the stronger persistence, welfare losses under OCP more than dou-
ble. Under ODP (figure 18), preemptive easing is much stronger, the
deflation bias is substantially larger, and welfare losses increase by a
factor of 5.5. And under the TTR (figure 19), deviations of inflation

Table 4. Properties of Selected Rules with More
Persistent #+™

ocCp ODP TTR
p(r™) 0.80 0.80 0.80
std(m) x2.14 x2.94 x2.44
std(z) x1.55 x1.76 x1.42
std(i) x1.02 x1.04 x1.52
Loss x2.69 x5.47 x4.39
Pr(i = 0)% x1.09 x1.21 x11.20
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Figure 17. Sensitivity of OCP to p
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Figure 19. Sensitivity of TTR to p
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and the output gap from target become larger and more persistent,
the frequency of hitting the zero floor increases by a factor of 11,
and welfare losses more than quadruple.

6.1.3 Lower Mean

The effects of a lower steady state of the natural real rate at 2
percent—keeping the variance and persistence of r" constant—are
illustrated in figures 20 and 21 and summarized in table 5.25
Under OCP, preemptive easing is a bit stronger, while future
monetary policy loosening is much more prolonged; losses more than
double. Interestingly, under ODP, preemptive easing is so strong that
the nominal rate is zero more than half of the time. The deflation
bias is larger, and losses increase by a factor of 4.5. And under the

2’Notice that for simple rules such as the TTR, it is the sum * + 7* that
provides a “buffer” against the zero lower bound. Therefore, up to a constant
shift in the rate of inflation, varying r* is equivalent to testing for sensitivity
with respect to 7*.
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Figure 20. Sensitivity of OCP to r*
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Table 5. Properties of Selected Rules with Lower r*

ocCP ODP TTR
r* 2% 2% 2%
std(m) x1.74 x1.79 x1.00
std(z) x1.55 x1.62 x1.00
std (i) %0.89 % 0.87 %0.98
Loss x2.59 x4.47 x1.48
Pr(i = 0)% x1.51 x1.59 x9.27

TTR, the zero floor is hit nine times more often, while losses increase

by 50 percent.

6.2 Instrument Rule Specification

6.2.1

The Strength of Response

Table 6 reports the dependence of welfare losses on the size of
response coefficients in the truncated Taylor rule. It turns out that
losses can be reduced substantially by having the interest rate react
more aggressively to deviations of inflation (and to some extent the
output gap) from target. For instance, losses are halved with ¢, = 10
and ¢, = 1 relative to the benchmark case ¢, = 1.5 and ¢, = 0.5.
And they are reduced further to one-fifth with ¢, = 100.

Table 6. Relative Losses under TTRs with Different

Response Coefficients

b
¢, | 1.01 | 1.5 2 2.5 3 5 10 50 100
0 x1.89| 1.80 | 1.71 | 1.65| 1.57 | 1.34| 095 | 0.27| 0.18
0.5 | x1.03| 1 097 | 094 | 090 | 080 | 0.59 | 0.24| 0.18
0.75 | x0.81| 0.79 | 0.76 | 0.74 | 0.72 | 0.65 | 0.55 | 0.23 | 0.17
1 x0.65| 0.63 | 0.62 | 0.60 | 0.58 | 0.53 | 0.50 | 0.22 | 0.17
1.5 | x3.16] 1.07 | 0.74 | 062 | 057 | 048 | 0.39| 0.21 | 0.17
2 n.a 205 113 | 077 | 0.64| 045 | 041 | 0.24 | 0.23
3 n.a na. | 444 264 | 192 | 083 | 045 | 0.29 | 0.27
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In the absence of cost-push shocks, there is no policy trade-off,
and in the model without zero lower bound, the central bank can
approximate arbitrarily well the first-best outcome by threatening to
adjust the interest rate by an infinite amount (¢, — 00, ¢, — 00) in
response to deviations of inflation and the output gap from target. In
the case with zero lower bound, however, such a threat is constrained
by the zero floor and implies that the nominal interest rate will be
zero much of the time in response to infinitesimal target shortfalls. In
practice, with response coefficients above ¢, = 100 and ¢, = 3, our
numerical algorithm fails to converge. Nevertheless, table 6 shows
that within the feasible range, welfare losses decline in a monotone
fashion as the inflation reaction coefficient is increased. On the other
hand, there is a nonlinearity when varying the output-gap coefficient.
Namely, losses are higher with a small output-gap coefficient, then
decline as the coefficient is raised; but as the output-gap response
coefficient is increased further, welfare losses start rising again.

6.2.2 Forward-Looking, Contemporaneous, or
Backward-Looking Reaction

For given response coefficients of a truncated Taylor rule, welfare
losses turn out to be smallest under a backward-looking rule and
highest under a forward-looking specification. While losses are still
small in absolute value, with ¢, = 1.5 and ¢, = 0.5, they are up by
25 percent under the forward-looking rule and are around 15 percent
lower under the backward-looking rule, relative to the contempora-
neous one. The frequency of hitting the zero floor is similarly higher
under a forward-looking specification and lower under a backward-
looking one. The reason for the dominance of the backward-looking
rule can be that under it the interest rate tends to be kept lower
following periods of deflation, in a way that resembles the optimal
history dependence under commitment. On the other hand, under
forward-looking rules, the effective response to a given shock to the
natural real rate is lower, given the assumed autoregressive nature
of the natural real rate.

6.3 Endogenous Inflation Persistence and the Zero Floor

Wolman (1998), among others, has argued that stickiness of infla-
tion is crucial in generating costs of deflation associated with the zero
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floor. To follow up on this hypothesis, I extend the present frame-
work by incorporating endogenous inflation persistence.?® Lagged
dependence of inflation may result if firms that do not reoptimize
prices index them to past inflation. In this case, the (log-linearized)
inflation dynamics can be represented with the following modified
Phillips curve (Christiano, Eichenbaum, and Evans 2001; Woodford
2003):

%t = ﬁEt%\t—kl + KR, (51)

where 7, = m; — ymy_1 is a quasi-difference of inflation and v meas-
ures the degree of price indexation.

An important thing to keep in mind is that in principle the
welfare-relevant loss function is endogenous to the structure of
the model. Hence, strictly speaking, one cannot compare welfare
in the two environments—with and without inflation persistence—
using the same loss criterion. On the other hand, Woodford (2003)
shows that in the case of indexation to past inflation, the welfare-
relevant loss function takes the same form as (3), except that infla-
tion is replaced by its quasi-difference 7;. This implies that inflation
persistence (as measured by 7) does not affect welfare under an
optimal targeting rule that takes into account the existing degree
of economy-wide indexation. However, since micro evidence on price
changes rejects the presence of such indexation, I use the same cri-
teria as in the baseline model to evaluate the performance of rules
in an environment with endogenous inflation persistence.

Table 7 reports the properties of selected regimes relative to
the baseline environment without endogenous inflation persistence.
Under the optimal constant price-level targeting rule, an increase in
the persistence of inflation to 0.8 results in doubling of inflation
volatility and almost tripling of the baseline loss measure. Simi-
larly, inflation volatility more than doubles and welfare losses nearly
quadruple under the baseline truncated Taylor rule when the stick-
iness of inflation increases to 0.8. Interestingly, the properties of
optimal discretionary policy are found to depend in a nonlinear way
on the degree of inflation persistence. Namely, while an increase in
inflation persistence to 0.5 raises inflation volatility by 80 percent

26In this case, lagged inflation becomes a state variable and the first-order
conditions are adjusted accordingly.
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Table 7. Performance of Selected Rules with Endogenous
Inflation Persistence Relative to the Baseline
Environment without Inflation Persistence

PLT PLT ODP ODP TTR TTR

0% 0.5 0.8 0.5 0.8 0.5 0.8

std(7) x1.46 x2.21 x1.80 x1.02 x1.54 x2.35
std(x) x1.01 x1.02 x1.12 x0.81 x0.98 x0.95
std(7) x1.00 x1.00 | x1.01 x1.02 x1.06 x1.10
Loss x1.50 x2.77 x3.74 x2.66 x1.83 x3.70

Pr(i = 0)% x1.00 x1.00 x1.04 x1.15 x1.46 x2.00

and nearly quadruples losses, a further increase of inflation persis-
tence to 0.8 leads to relatively smaller losses. The reason is that
high inflation persistence serves as an additional channel of policy,
making it possible for the central bank to “steer away” from an
approaching liquidity trap by choosing higher current inflation.

7. Conclusions

Recent treatments of the zero-lower-bound issue have suffered from
some important limitations. These include assuming perfect fore-
sight or forcing certainty equivalence, or treating the zero floor as an
initial condition rather than an occasionally binding non-negativity
constraint. This paper addresses these issues, providing a global solu-
tion to a standard stochastic sticky-price model with an explicit
occasionally binding ZLB on the nominal interest rate. As it turns
out, the dynamics (and in some cases the unconditional means) of
the nominal rate, inflation, and the output gap are strongly affected
by uncertainty in the presence of the zero interest rate floor.

In particular, optimal discretionary policy involves a deflation-
ary bias and interest rates are cut more aggressively when the risk of
deflation is high, implying that they are kept lower both before and
after a liquidity trap. The extent of such lowering of rates is found
to increase in the variance and persistence of shocks to the natural
real rate, and to decrease in its unconditional mean. Moreover, the



122 International Journal of Central Banking June 2008

preemptive lowering of rates is even more important under discre-
tionary policy in the presence of endogenous inflation persistence.
Compared with that, under optimal commitment policy, the need
for preemptive lowering of interest rates is limited since the central
bank can commit to a period of looser monetary policy conditional
on the economy’s recovery from a possible liquidity trap.

Imposing the zero lower bound correctly in the stochastic model
allows us to evaluate quantitatively the performance of a variety
of monetary policy regimes. Thus, commitment to the optimal rule
reduces welfare losses to one-tenth of those achievable under dis-
cretionary policy. Constant price-level targeting delivers losses that
are only 60 percent greater than those under the optimal commit-
ment policy. In contrast, under a truncated Taylor rule, losses are
twenty times greater than under the optimal commitment policy.
Another interesting finding is that the unconditional welfare losses
associated with simple instrument rules are almost unaffected by
the zero lower bound per se and instead derive from the suboptimal
responses to shocks characteristic of simple rules. This is related to
the fact that under simple instrument rules, the zero lower bound
is hit very rarely, while optimal commitment policy involves a zero
nominal interest rate around one-third of the time.

In fact, in an extension of the model with money, optimal pol-
icy might be expected to visit the liquidity trap even more often.
Hitting the zero lower bound in that case would be good because it
eliminates the opportunity cost of holding cash balances. An inter-
esting question to address in that setup would be how the optimal
mean of the nominal interest rate is affected by the existence of
the zero lower bound. Solving the fully nonlinear problem would be
another useful extension; however, it increases the dimensionality of
the computational problem. A limitation of the solution technique
employed here is that it is practical only for models with a limited
number of states.

Appendix. Numerical Algorithm

This section illustrates the algorithm used to solve the problem in
the case of discretionary optimization. The cases with commitment
and with simple rules are solved in a similar way. I apply the rou-
tines for rational-expectations models included in the CoMPECON
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toolkit of Miranda and Fackler (2002). These solve for the optimal
response x as a function of the state s, when equilibrium responses
are governed by an arbitrage-complementarity condition of the form

flsts e, Eth(si41, Te41)] = ¢, (52)

where s follows the state transition function

St+1 = g(St, Tt E¢41) (53)
and z; and ¢; satisfy the complementarity conditions

a(sy) <xp <b(se), x5t > aj(st)=>05: <0, x5 <bj(st)=0¢5 >0,
(54)

where ¢, is a vector whose j* element, ¢;j¢, measures the marginal
loss from activity j. In equilibrium, ¢;; must be nonpositive (non-
negative) if xj; is greater (less) than its lower (upper) bound; oth-
erwise, agents can gain by reducing (increasing) activity j. If zj;
is neither at its upper nor at its lower bound, ¢;; must be zero to
preclude arbitrage possibilities.

In the context of the monetary policy model under discretion, f};
is the derivative of the complementarity condition (15) with respect
to the nominal interest rate, and ¢;; is the Lagrange multiplier ¢1;
associated with the non-negativity constraint on the nominal interest
rate:

—()\xt + :‘iﬂ't) = (251,5. (55)

Since there is no upper bound on the interest rate, b(s;) = 400, and
x¢ < b(s) always holds so that ¢y, is non-negative. This, together
with a(s;) = 0, implies that in the case of discretionary optimization,
the above complementarity problem reduces to

it 20, ¢11 20, i >0=0¢1,;=0, (56)
which also can be written as
120, ¢1: 20, 41 =0. (57)

An approximate solution is obtained with the method of colloca-
tion, which in this case consists of approximating the expectation
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functions Fix:11 and Eymsyq by linear combinations of known basis
functions, 6;, whose coefficients, c¢;, are determined by requiring
the approximants to satisfy the equilibrium equations exactly at
n collocation nodes:

n

Bls,x(s)] ~ 3 ¢i6;(s). (58)

j=1

The coefficients are determined by the following algorithm. For a
given value of the coeflicient vector ¢, the equilibrium responses x;
are computed at the n collocation nodes s; by solving the com-
plementarity problem (which is transformed into a standard root-
finding problem). Then, given the equilibrium responses x; at the
collocation nodes s;, the coefficient vector c¢ is updated solving the
n-dimensional linear system

n

> cibi(si) = hisi, ;). (59)

J=1

This iterative procedure is repeated until the distance between suc-
cessive values of ¢ becomes sufficiently small (Miranda and Fackler
2002).

To approximate the expectation functions, Fix:11 and Eymiqq,
one needs to discretize the shock to r”. Here the normal shock to
the natural rate of interest is discretized using a K-node Gaussian
quadrature scheme:

K n
Ehls,z(s)] ~ Z Zwkcjé’j[g(si,x,sk)], (60)

E=1j=1

where € and wy are Gaussian quadrature nodes and weights cho-
sen so that the discrete distribution approximates the continuous
univariate normal distribution N(0,c?).

In the discretionary optimization problem I use linear splines on
a uniform grid of 2,000 points for values of the natural rate of inter-
est between —10 percent and 410 percent, so that each point on
the grid corresponds to 1 basis point. In this problem, linear splines
work better than Chebychev polynomials or cubic splines because
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the response function has a kink in the place where the zero bound
becomes binding.

There are two types of approximation errors. On the one hand
are the deviations from the equilibrium first-order conditions. In this
case the “arbitrage benefits” are negligible for each of the three equi-
librium equations (13), (14), and (15). Specifically, they are of the
order of 10716 for the IS and the Phillips curves, and 1079 for the
complementarity condition. On the other hand are the residuals from
the approximation of the expectation functions. Except for a couple
of residuals of the order of 10~%, concentrated mostly in the place
where the zero constraint becomes binding, the rest of the residuals
are of the order of 1078, Given the measurement units, a residual of
10~* corresponds to 0.001 percent of annual inflation or output-gap
error, which, provided that the residuals of this size are just a few, is
a satisfactory level of accuracy for the problem at hand. In principle,
the expectations residuals can be reduced further by concentrating
more evaluation points in the neighborhood of the kink and by using
more quadrature nodes, albeit at the cost of computing time.

In the case of commitment, the problem is first cast in the form
specified by (52), (53), and (54) by substituting out ¢o; from (24) into
(25) and the resulting expression for ¢4 into (26). In addition, the
state transition vector is augmented by the two “co-state” variables
¢1+ and ¢or, which are cast in recursive form using (24) and (25):

b1t = P1e—1(1 + K0) /B + Kdor—1 — Axy — KTy (61)
Pot = P1¢—10/0 + Par—1 — Ty (62)

With simple rules, the system is in the required form, and the only
necessary adjustments are to the state transition vector in those
cases when past endogenous variables enter the rule.
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