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We develop a novel technique to estimate inflation expec-
tations and inflation risk premia when only a limited number
of inflation-indexed bonds are available. The method involves
pricing coupon-bearing inflation-indexed bonds directly in
terms of an affine term structure model, and avoids the usual
requirement of estimating zero-coupon real yield curves. We
estimate the model using a non-linear Kalman filter and apply
it to Australia. The results suggest that long-term inflation
expectations in Australia are well anchored within the Reserve
Bank of Australia’s inflation target range of 2 to 3 percent, and
that inflation expectations are less volatile than inflation risk
premia.

JEL Codes: E31, E43, G12.

1. Introduction

Reliable and accurate estimates of inflation expectations are impor-
tant to central banks, given the role of these expectations in influ-
encing inflation and economic activity. Inflation expectations may
also indicate over what horizon individuals believe that a central
bank will achieve its inflation target, if at all.

A common measure of inflation expectations based on financial
market data is the break-even inflation yield, referred to simply as
the inflation yield. The inflation yield is given by the difference in
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yields of nominal and inflation-indexed zero-coupon bonds of equal
maturity. That is,
i

. T
Yt,r = yt,T yt,'ﬂ

)

where yém is the inflation yield between time ¢ and ¢ + 7, y;', is
the nominal yield, and y; , is the real yield.! But the inflation yield
may not give an accurate reading of inflation expectations. Inflation
expectations are an important determinant of the inflation yield but
are not the only determinant; the inflation yield is also affected by
inflation risk premia, which is the extra compensation required by
investors who are exposed to the risk that inflation will be higher
than expected (we assume that other factors that may affect the
inflation yield, such as liquidity premia, are absorbed into risk pre-
mia in our model). By treating inflation as a random process, we
are able to model expected inflation and the cost of the uncertainty
associated with inflation separately.

Inflation expectations and inflation risk premia have been esti-
mated for the United Kingdom and the United States using mod-
els similar to the one used in this paper. Beechey (2008) and
Joyce, Lildholdt, and Sorensen (2010) find that inflation risk premia
decreased in the United Kingdom, first after the Bank of England
adopted an inflation target and then again after it was granted inde-
pendence. Using U.S. Treasury Inflation-Protected Securities (TIPS)
data, Durham (2006) estimates expected inflation and inflation risk
premia, although he finds that inflation risk premia are not signifi-
cantly correlated with measures of the uncertainty of future inflation
or monetary policy. Also using TIPS data, D’Amico, Kim, and Wei
(2008) find inconsistent results due to the decreasing liquidity pre-
mia in the United States, although their estimates are improved
by including survey forecasts and using a sample over which the
liquidity premia are constant.

In this paper we estimate a time series for inflation expecta-
tions at various horizons, taking into account inflation risk premia,
using a latent factor affine term structure model which is widely

!To fix terminology, all yields referred to in this paper are gross, continuously
compounded zero-coupon yields. So, for example, the nominal yield is given by
yrr = —log(P;;), where P, is the price at time ¢ of a zero-coupon nominal
bond paying one dollar at time ¢ + 7.
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used in the literature. Compared with the United Kingdom and the
United States, there are a very limited number of inflation-indexed
bonds on issue in Australia. This complicates the estimation but also
highlights the usefulness of our approach. In particular, the limited
number of inflation-indexed bonds means that we cannot reliably
estimate a zero-coupon real yield curve and so cannot estimate the
model in the standard way. Instead we develop a novel technique that
allows us to estimate the model using the price of coupon-bearing
inflation-indexed bonds instead of zero-coupon real yields. The esti-
mation of inflation expectations and risk premia for Australia, as
well as the technique we employ to do so, is the chief contribution
of this paper to the literature.

To better identify model parameters, we also incorporate infla-
tion forecasts from Consensus Economics in the estimation. Inflation
forecasts provide shorter-maturity information (for example, fore-
casts exist for inflation next quarter) as well as information on infla-
tion expectations that is separate from risk premia. Theoretically the
model is able to estimate inflation expectations and inflation risk
premia purely from the nominal and inflation-indexed bond data;
inflation risk premia compensate investors for exposure to variation
in inflation, which should be captured by the observed variation
in prices of bonds at various maturities. This is, however, a lot of
information to extract from a limited amount of data. Adding fore-
cast data helps to better anchor the model estimates of inflation
expectations and so improves model fit.

Inflation expectations as estimated in this paper have a number
of advantages over using the inflation yield to measure expectations.
For example, five-year-ahead inflation expectations as estimated in
this paper (i) account for risk premia and (ii) are expectations of the
inflation rate in five years time. In contrast, the five-year inflation
yield ignores risk premia and gives an average of inflation rates over
the next five years.? The techniques used in the paper are potentially

2In addition, due to the lack of zero-coupon real yields in Australia’s case,
yields-to-maturity of coupon-bearing nominal and inflation-indexed bonds have
historically been used when calculating the inflation yield. This restricts the hori-
zon of inflation yields that can be estimated to the maturities of the existing
inflation-indexed bonds, and is not a like-for-like comparison due to the differing
coupon streams of inflation-indexed and nominal bonds.
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useful for other countries with a limited number of inflation-indexed
bonds on issue.

In section 2 we outline the model. Section 3 describes the data,
estimation of the model parameters and latent factors, and how these
are used to extract our estimates of inflation expectations. Results
are presented in section 4 and conclusions are drawn in section 5.

2. Model

2.1 Affine Term Structure Model

Following Beechey (2008), we assume that the inflation yield can be
expressed in terms of an inflation stochastic discount factor (SDF).
The inflation SDF is a theoretical concept, which for the purpose
of asset pricing incorporates all information about income and con-
sumption uncertainty in our model. Appendix 1 provides a brief
overview of the inflation, nominal, and real SDFs.

We assume that the inflation yield can be expressed in terms of
an inflation SDF, M}, according to

3 Mt?—l-’r
i (45)

We further assume that the evolution of the inflation SDF can be
approximated by a diffusion equation,

M}
M

= —midt — A dB,. (1)

According to this model, E;(dM]/M}) = —xidt, so that the instan-
taneous inflation rate is given by 7{. The inflation SDF also depends
on the term )\i/dBt. Here B; is a Brownian motion process and Al
relates to the market price of this risk. A; determines the risk pre-
mium, and this setup allows us to separately identify inflation expec-
tations and inflation risk premia. This approach to bond pricing is
standard in the literature and has been very successful in capturing
the dynamics of nominal bond prices (see Kim and Orphanides 2005,
for example).
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We model both the instantaneous inflation rate and the market
price of inflation risk as affine functions of three latent factors. The
instantaneous inflation rate is given by

T = po+ p'xs, (2)
where x; = [z}, 22, 23] are our three latent factors.® Since the latent
factors are unobserved, we normalize p to be a vector of ones, 1, so
that the inflation rate is the sum of the latent factors and a constant,
po. We assume that the price of inflation risk has the form

Ai - AO + AXt, (3)

where Ag is a vector and A is a matrix of free parameters.

The evolution of the latent factors x; is given by an Ornstein-
Uhlenbeck process (a continuous-time mean-reverting stochastic
process),

where K(p — x;) is the drift component, K is a lower triangular
matrix, B; is the same Brownian motion used in equation (1), and
> is a diagonal scaling matrix. In this instance we set pu to zero
so that x; is a zero-mean process, which implies that the average
instantaneous inflation rate is pg.

Equations (1)—(4) can be used to show how the latent factors
affect the inflation yield (see appendix 2 for details). In particular,
one can show that

Ui =0F+ B %, ()

where o and 3 are functions of the underlying model parameters.
In the standard estimation procedure, when a zero-coupon inflation
yield curve exists, this function is used to estimate the values of x;.

3Note that one can specify models in which macroeconomic series take the
place of latent factors—as done, for example, in Hérdahl (2008). Such models
have the advantage of simpler interpretation but, as argued in Kim and Wright
(2005), tend to be less robust to model misspecification and generally result in a
worse fit of the data.
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2.2 Pricing Inflation-Indexed Bonds in the Latent
Factor Model

We now derive the price of an inflation-indexed bond as a function of
the model parameters, the latent factors, and nominal zero-coupon
bond yields, denoted H1(x;). This function will later be used to
estimate the model as described in section 3.2.

As is the case with any bond, the price of an inflation-indexed
bond is the present value of its stream of coupons and its par value.
In an inflation-indexed bond, the coupons are indexed to inflation
so that the real value of the coupons and principal is preserved. In
Australia, inflation-indexed bonds are indexed with a lag of between
4% and 5% months, depending on the particular bond in question.
If we denote the lag by A and the historically observed increase
in the price level between ¢t — A and ¢ by I; o, then at time ¢ the
implicit nominal value of the coupon paid at time ¢t + 75 is given
by the real (at time ¢ — A) value of that coupon, Cj, adjusted for
the historical inflation that occurred between ¢t — A and ¢, I; A, and
further adjusted by the current market-implied change in the price
level between periods ¢ and t 4+ 75 — A using the inflation yield. So
the implied nominal coupon paid becomes CI; A exp(y}:,TS_ A)- The
present value of this nominal coupon is then calculated using the
nominal discount factor between ¢ and ¢ + 75, exp(—y;’,.). So if an
inflation-indexed bond pays a total of m coupons, where the par
value is included in the set of coupons, then the price at time ¢ of
this bond is given by

m

m
(3 n [3 n
Ptr = E (CSIt,Aeyt’T‘SiA)e Yt,rs = E CSIt7A6yt,T57A Yt,7s .

s=1 s=1

We noted earlier that the inflation yield is given by yaT =
ak 4+ B2'xy, so the bond price can be written as

m
PP =Y Ol neWimtot st Z Hi(x,).  (6)

s=1

Note that exp(—y;', ) can be estimated directly from nominal bond
yields (see section 3.1). So the price of a coupon-bearing inflation-
indexed bond can be expressed as a function of the latent factors x;
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as well as the model parameters, nominal zero-coupon bond yields,
and historical inflation. We define H1(x;) as the non-linear function
that transforms our latent factors into bond prices.

2.8 Inflation Forecasts in the Latent Factor Model

In the model, inflation expectations are a function of the latent
factors, denoted H2(x;). Inflation expectations are not equal to
expected inflation yields since yields incorporate risk premia,
whereas forecasts do not. Inflation expectations as reported by Con-
sensus Economics are expectations at time ¢ of how the CPI will
increase between time s in the future and time s+7 and are therefore

given by
s+7T
E, (exp (/ widu)) = H2(xy),

where 7} is the instantaneous inflation rate at time ¢. In appendix 2
we show that one can express H2(x;) as

H2(X) = exp <_ O, — B;(G—K(S—t)xt 4 (I o e—K(s—t))”)

_l’_

N |

BB, ). (7)
B,

The parameters o, and (and Q,_;) are defined in appendix 2,
and are similar to o and B} from equation (5).

3. Data and Model Implementation

3.1 Data

Four types of data are used: nominal zero-coupon bond yields
derived from nominal Australian Commonwealth Government
bonds, Australian Commonwealth Government inflation-indexed
bond prices, inflation forecasts from Consensus Economics, and his-
torical inflation.

Nominal zero-coupon bond yields are estimated using the
approach of Finlay and Chambers (2009). These nominal yields cor-
respond to y;', and are used in computing our function H1(x;)
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from equation (6). Note that the Australian nominal yield curve has
maximum maturity of roughly twelve years. We extrapolate nomi-
nal yields beyond this by assuming that the nominal and real yield
curves have the same slope. This allows us to utilize the prices of
all inflation-indexed bonds, which have maturities of up to twenty-
four years (in practice, the slope of the real yield curve beyond
twelve years is very flat, so that if we instead hold the nominal yield
curve constant beyond twelve years, we obtain virtually identical
results).

We calculate the real prices of inflation-indexed bonds using
yield data.* Our sample runs from July 1992 to December 2010,
with the available data sampled at monthly intervals up to June
1994 and weekly intervals thereafter; bonds with less than one year
remaining to maturity are excluded. By comparing these computed
inflation-indexed bond prices, which form the P/ in equation (6),
with our function H1(x;), we are able to estimate the latent factors.
We assume that the standard deviation of the bond price measure-
ment error is 4 basis points. This is motivated by market liaison
which suggests that, excluding periods of market volatility, the bid-
ask spread has stayed relatively constant over the period considered,
at around 8 basis points. Some descriptive statistics for nominal and
inflation-indexed bonds are given in table 1.

Note that inflation-indexed bonds are relatively illiquid, espe-
cially in comparison to nominal bonds.? Therefore, inflation-indexed
bond yields potentially incorporate liquidity premia, which could
bias our results. As discussed, we use inflation forecasts as a measure
of inflation expectations. These forecasts serve to tie down inflation
expectations, and as such we implicitly assume that liquidity premia
are included in our measure of risk premia. We also assume that the
existence of liquidity premia causes a level shift in estimated risk pre-
mia but does not greatly bias the estimated changes in risk premia.b

* Available from table F16 at www.rba.gov.au/statistics/tables/index.html.

® Average yearly turnover between 2003-04 and 2007-08 was roughly $340 bil-
lion for nominal government bonds and $15 billion for inflation-indexed bonds,
which equates to a turnover ratio of around 7 for nominal bonds and 2% for
inflation-indexed bonds (see Australian Financial Markets Association 2008).

%Inflation swaps are now more liquid than inflation-indexed bonds and may
provide alternative data for use in estimating inflation expectations at some point
in the future. Currently, however, there is not a sufficiently long time series of
inflation swap data to use for this purpose.
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Table 1. Descriptive Statistics of Bond Price Data

Time Period

1992—|1996— | 2001— | 2006—
Statistic 1995 | 2000 | 2005 | 2010
Number of Bonds: Nominal 12-19 | 12-19 | 812 | &-14
Inflation Indexed| 3-5 4-5 34 2-4
Maximum Tenor: Nominal 11-13 | 11-13 | 11-13 | 11-14
Inflation Indexed | 13-21 | 19-24 | 15-20 | 11-20
Average Outstanding: Nominal 49.5 | 70.2 | 50.1 | 69.5
Inflation Indexed| 2.1 5.0 6.5 7.1

Note: Tenor in years; outstandings in billions; only bonds with at least one year to
maturity are included.

The inflation forecasts are taken from Consensus Economics. We
use three types of forecast:

(i) monthly forecasts of the percentage change in CPI over the
current and the next calendar year

(ii) quarterly forecasts of the year-on-year percentage change in
the CPI for seven or eight quarters in the future

(iii) biannual forecasts of the year-on-year percentage change in
the CPI for each of the next five years, as well as from five
years in the future to ten years in the future

We use the function H2(x;) to relate these inflation forecasts to the
latent factors, and use the past forecasting performance of the infla-
tion forecasts relative to realized inflation to calibrate the standard
deviation of the measurement errors.

Historical inflation enters the model in the form of I; o from
section 2.2, but otherwise is not used in estimation. This is because
the fundamental variable being modeled is the current instantaneous
inflation rate. Given the inflation law of motion (implicitly defined
by equations (2)—(4)), inflation expectations and inflation-indexed
bond prices are affected by current inflation and so can inform our
estimation. By contrast, the published inflation rate is always “old
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news” from the perspective of our model and so has nothing direct
to say about current instantaneous inflation.”

3.2 The Kalman Filter and Mazimum-Likelihood Estimation

We use the Kalman filter to estimate the three latent factors, using
data on bond prices and inflation forecasts. The Kalman filter can
estimate the state of a dynamic system from noisy observations. It
does this by using information about how the state evolves over
time, as summarized by the state equation, and relating the state to
noisy observations using the measurement equation. In our case the
latent factors constitute the state of the system and our bond prices
and forecast data constitute the noisy observations. From the latent
factors we are able to make inferences about inflation expectations
and inflation risk premia.

The standard Kalman filter was developed for a linear system.
Although our state equation (given by equation (14)) is linear, our
measurement equations, using H1(x;) and H2(x;) as derived in
sections 2.2 and 2.3, are not. This is because we work with coupon-
bearing bond prices instead of zero-coupon yields. We overcome this
problem by using a central difference Kalman filter, which is a type
of non-linear Kalman filter.®

The approximate log-likelihood is evaluated using the forecast
errors of the Kalman filter. If we denote the Kalman filter’s forecast
of the data at time ¢t by y:((,x¢(¢,y+—1))—which depends on the
parameters (¢) and the latent factors (x:(¢,y¢—1)), which in turn
depend on the parameters and the data observed up to time ¢t — 1
(y¢—1)—then the approximate log-likelihood is given by

L) =~ (log|Py,| + (y: — 1) Py (ye — 92)').-

t=1

"Note that our model is set in continuous time; data are sampled discretely,
but all quantities—for example, the inflation law of motion as well as inflation
yields and expectations—evolve continuously. 7; from equation (2) is the current
instantaneous inflation rate, not a one-month or one-quarter rate.

8See appendix 3 for more detail on the central difference Kalman filter.
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Here the estimated covariance matrix of the forecast data is
denoted by Py,.2 In the model the parameters are given by ¢ =
(K, )\07 A, Po, E)

We numerically optimize the log-likelihood function to obtain
parameter estimates. From the parameter estimates we use the
Kalman filter to obtain estimates of the latent factors.

3.3  Calculation of Model Estimates

For a given set of model parameters and latent factors, we can cal-
culate inflation forward rates, expected future inflation rates, and
inflation risk premia.

In appendix 2 we show that the expected future inflation rate at
time ¢ for time ¢ + 7 can be expressed as

E, (ﬁi+7) =po+1 e Ex,.

The inflation forward rate at time ¢ for time ¢ + 7, fti,T, is the
rate of inflation at time ¢ + 7 implied by market prices of nominal
and inflation-indexed bonds trading at time ¢. It is related to the
inflation yield via yiﬁ = tt+T fti’ ;ds.1% As bond prices incorporate
inflation risk, so does the inflation forward rate. In our model the

inflation forward rate is given by

fir=po+1 (" T+ (I —e X))
1 * _ " _
_ 5(1/([ _ €_K T)K* 12)(1/(1 o C_K T)K* 12)/.
See appendix 2 for details on the above and definitions of K* and p*.
The inflation risk premium is given by the difference between
the inflation forward rate, which incorporates risk aversion, and

°In actual estimation we exclude the first six months of data from the likeli-
hood calculation to allow “burn-in” time for the Kalman filter.

10Note that at time t the inflation forward rate at time s > t, fis, is known,
as it is determined by known inflation yields. The inflation rate, w¢, that will
prevail at s is unknown, however, and in our model is a random variable. 7, is

related to the known inflation yield by exp(—y; ,) = E¢(exp(— :+T 7" ds)) so
that yi , = — log(E¢(exp(— f:JrT 7* ds))), where 7i* is the so-called risk-neutral

version of 7 (see appendix 2 for details).
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the expected future inflation rate, which is free of risk aversion.
The inflation risk premium at time ¢ for time ¢ + 7 is given by

fti,T - Et(ﬂ-g—iﬂ')'

4. Results

4.1  Model Parameters and Fit to Data

We estimate the model over the period July 31, 1992 to December
15, 2010 using a number of different specifications. First we estimate
both two- and three-factor versions of our model. Using a likelihood-
ratio test, we reject the hypothesis that there is no improvement of
model fit between the two-factor model and three-factor model and
so use the three-factor model. (Three factors are usually consid-
ered sufficient in the literature, with for example the overwhelming
majority of variation in yields captured by the first three principal
components. )

We also consider three-factor models with and without forecast
data. Both models are able to fit the inflation yield data well, with
a mean absolute error between ten-year inflation yields as estimated
from the models and ten-year break-even inflation calculated directly
from bond prices of around 5 basis points.'! The model without fore-
cast data gives unrealistic estimates of inflation expectations and
inflation risk premia, however: ten-year-ahead inflation expectations
are implausibly volatile and can be as high as 8 percent and as low as
—1 percent, which is not consistent with economists’ forecasts. These
findings are consistent with those of Kim and Orphanides (2005),
where the use of forecast data is advocated as a means of separating
expectations from risk premia. Note, however, that estimates from
the model with forecast data are not solely determined by the fore-
casts; the model estimates of expected future inflation only roughly
match the forecast data and on occasion deviate significantly from
them, as seen in figure 1.

" The divergence between model yields and those measured directly from bond
data is mainly due to the different types of yields not being directly comparable—
model estimates are zero-coupon yields that take into account indexation lag,
while the direct measure is estimated from coupon-bearing bonds which reflect a
certain amount of historical inflation.
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Figure 1. Forecast Change in CPI
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Source: Consensus Economics; authors’ calculations.

Our preferred model is thus the three-factor model estimated
using forecast data. Likelihood-ratio tests indicate that two parame-
ters of that model (Aj; and Agp) are statistically insignificant and
so they are excluded. Our final preferred model has twenty freely
estimated parameters, which are given in table 2. We note that the
estimate of pg, the steady-state inflation rate in our model, is 2.6
percent, which is within the inflation target range. The persistence
of inflation is essentially determined by the diagonal entries of the
K matrix, which drives the inflation law of motion as defined by
equations (2)—(4). The first diagonal entry of K is 0.19, which in a
single-factor model would imply a half-life of the first latent factor
(being the time taken for the latent factor, and so inflation, to revert
halfway back to its mean value after experiencing a shock) of around
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Table 2. Parameter Estimates for Final Model
(Model Estimated 1992—-2010)

Index Number (i)

Parameter 1 2 3

o 2.64 (0.26) — —
(K) 1, 0.19 (0.02) 0 0
(K)o —2.88 (0.05) 175 (0.05) 0
(K)s: 111 (0.05) 174 (0.05) 0.80 (0.01)
(2)si 0.11 (0.02) 151 (0.10) 0.96 (0.02)
Ao.i 0.12 (0.01) 0.10 (0.01) | —0.01 (0.00)
(M) 0 55.44  (0.32) 15.31  (0.06)
(A)o; 0 ~107.80 (0.26) | —8.91 (0.06)
(A)s; ~12.38 (0.08) | —144.22 (0.45) | —73.07 (0.20)
Note: po and (X);; are given in percentage points; standard errors are shown in
parentheses.

3% years. The half-lives of the other two latent factors would be five
and ten months.

4.2 Qualitative Discussion of Results
4.2.1 Inflation Ezpectations

Our estimated expected future inflation rates at horizons of one, five,
and ten years are shown in figure 2. Two points stand out immedi-
ately: one-year-ahead inflation expectations are much more volatile
than five- and ten-year-ahead expectations and, as may be expected,
are strongly influenced by current inflation (not shown); longer-term
inflation expectations appear to be well anchored within the 2 to 3
percent target range.

We see that there is a general decline in inflation expectations
from the beginning of the sample until around 1999, the year before
the introduction of the Goods and Services Tax (GST). The esti-
mates suggest that the introduction of the GST on July 1, 2000
resulted in a large one-off increase in short-term inflation expec-
tations. This is reflected in the run-up in one-year-ahead infla-
tion expectations over calendar year 1999, although the peak in
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Figure 2. Expected Inflation Rates
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the estimated expectations is below the actual peak in year-end
CPI growth of 6.1 percent.'? Of particular interest, however, is the
non-responsiveness of five- and ten-year-ahead expectations, which
should be the case if the inflation target is seen as credible.

Long-term expectations increased somewhat between mid-2000
and mid-2001, perhaps prompted by easier monetary conditions
globally as well as relatively high inflation in Australia. Interest-
ingly, there appears to have been a sustained general rise in inflation
expectations between 2004 and 2008 at all horizons. Again this was
a time of rising domestic inflation, strong world growth, a boom in
the terms of trade, and rising asset prices.

In late 2008 the inflation outlook changed and short-term infla-
tion expectations fell dramatically, likely in response to forecasts
of very weak global demand caused by the financial crisis. Longer-
term expectations also fell before rising over the early part of 2009
as authorities responded to the crisis. The subsequent moderation
of longer-term expectations, as well as the relative stabilization of
short-term expectations over 2010 suggests that financial market

12The legislation introducing the GST was passed through Parliament in June
1999.
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Figure 3. Inflation Risk Premia

% %

participants considered the economic outlook and Australian author-
ities’ response to the crisis sufficient to maintain inflation within the
target range.

The latest data, corresponding to December 2010, shows one-
year-ahead inflation expectations exceeding 3 percent, close to the
Reserve Bank forecast for inflation of 2.75 percent over the year to
December 2011 given in the November 2010 Statement of Mone-
tary Policy. Longer-term model-implied inflation expectations as of
December 2010 are for inflation close to the middle of the 2 to 3
percent inflation target range.

4.2.2  Inflation Risk Premia

Although more volatile than our long-term inflation expectation esti-
mates, long-term inflation risk premia broadly followed the same
pattern—declining over the first third of the sample, gradually
increasing between 2004 and 2008 before falling sharply with the
onset of the global financial crisis, and then rising again as markets
reassessed the likelihood of a severe downturn in Australia (figure 3).
The main qualitative point of difference between the two series is
in their reaction to the GST. As discussed earlier, the estimates
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of long-term inflation expectations remained well anchored during
the GST period, whereas (as we can see from figure 3) the esti-
mates of long-term risk premia rose sharply. As the terminology
suggests, inflation expectations represent investors’ central forecast
for inflation, while risk premia can be thought of as representing
second-order information—essentially how uncertain investors are
about their central forecasts and how much they dislike this uncer-
tainty. So while longer-dated expectations of inflation did not change
around the introduction of the GST, the rise in risk premia indicates
a more variable and uncertain inflation outlook.

Although our estimates show periods of negative inflation risk
premia, indicating that investors were happy to be exposed to infla-
tion risk, this is probably not the case in reality. In our model, infla-
tion risk premia are given by forward rates of inflation (as implied by
the inflation yield curve), less inflation expectations. The inflation
yield curve is given as the difference between nominal and real yields.
Hence if real yields contain a liquidity premium, they will be higher,
shifting the inflation yield curve down and reducing the estimated
inflation risk premia to below their true level. The inflation-indexed
bond market is known to be relatively illiquid in comparison with
the nominal bond market, and this provides a plausible explanation
for our negative estimates.

If the illiquidity in the inflation-indexed bond market is con-
stant through time, then the level of our estimated risk premium
will be biased but changes in the risk premium should be accurately
estimated. Market liaison suggests that an assumption of relatively
constant liquidity, at least during normal times, is not an unreason-
able one; as noted earlier, for example, bid-ask spreads have stayed
relatively constant over most of the period under consideration. The
trough in inflation risk premia around late 2008 and early 2009 may
be one exception to this, however, with the liquidity premia for
inflation-indexed bonds relative to nominal bonds possibly increas-
ing (in line with increases in liquidity premia for most assets relative
to highly rated and highly liquid government securities at this time).

4.2.8 Inflation Forward Rates

The inflation forward rate reflects the relative prices of traded nom-
inal and inflation-indexed bonds and is given by the sum of inflation
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Figure 4. Inflation Forward Rates

expectations and inflation risk premia. As estimates of longer-term
inflation expectations are relatively stable, movements in the five-
and ten-year inflation forward rates tend to be driven by changes
in estimated risk premia. The inflation forward rate, as shown in
figure 4, generally falls during the first third of the sample, rises
around the time of the GST, and rises between 2004 and 2008 before
falling sharply with the onset of the financial crisis and then rising
again.'?

One notable feature of figure 4 is the negative inflation forward
rates recorded in late 2008. This phenomenon is essentially due to
very low break-even inflation rates embodied in the bond price data
(two-year-ahead nominal less real yields were only around 90 basis
points at this time), together with high realized inflation over 2008;
as break-even inflation rates reflect around five months of historical
inflation, a low two-year break-even inflation rate and high histori-
cal inflation necessarily implies a very low or even negative inflation

3Note that studies using U.S. and UK data essentially start with the infla-
tion forward rate, which they decompose into inflation expectations and inflation
risk premia. Due to a lack of data, we cannot do this, and instead we estimate
inflation forward rates as part of our model.
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forward rate in the near future. The low break-even inflation rates in
turn are due to the yields on inflation-indexed bonds rising relative
to the yields on nominal bonds.

5. Discussion and Conclusion

The model just described is designed to give policymakers accurate
and timely information on market-implied inflation expectations. It
has a number of advantages over existing sources for such data,
which primarily constitute either break-even inflation derived from
bond prices or inflation forecasts sourced from market economists.

As argued, break-even inflation as derived directly from bond
prices has a number of drawbacks as a measure of inflation expec-
tations: such a measure gives average inflation over the tenor of the
bond, not inflation at a certain date in the future; government bonds
in Australia are coupon bearing, which means that yields of similar-
maturity nominal and inflation-indexed bonds are not strictly com-
parable; there are very few inflation-indexed bonds on issue in Aus-
tralia, which means that break-even inflation can only be calculated
at a limited number of tenors; inflation-indexed bonds are indexed
with a lag, which means that their yields reflect historical inflation,
not just future expected inflation; and finally, bond yields incorpo-
rate risk premia so that the level of, and even changes in, break-even
inflation need not give an accurate read on inflation expectations.
Our model addresses each of these issues: we model inflation-indexed
bonds as consisting of a stream of payments where the value of each
payment is determined by nominal interest rates, historical inflation,
future inflation expectations, and inflation risk premia. This means
we are able to produce estimates of expected future inflation at any
time and for any tenor which are free of risk premia and are not
affected by historical inflation.

Model-derived inflation expectations also have a number of advan-
tages over expectations from market economists: unlike survey-based
expectations, they are again available at any time and for any tenor,
and they reflect the agglomerated knowledge of all market partici-
pants, not just the views of a small number of economists. By contrast,
the main drawback of our model is its complexity—break-even infla-
tion and inflation forecasts have their faults but are transparent and
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simple to measure, whereas our model, while addressing a number of
faults, is by comparison complex and difficult to estimate.

Standard affine term structure models, which take as inputs zero-
coupon yield curves and give as outputs expectations and risk pre-
mia, have existed in the literature for some time. Our main con-
tribution to this literature, apart from the estimation of inflation
expectations and inflation risk premia for Australia, is our reformu-
lation of the model in terms of coupon-bearing bond prices instead of
zero-coupon yields. In practice, zero-coupon yields are not directly
available but must be estimated, so by fitting the affine term struc-
ture model directly to prices, we avoid inserting a second arbitrary
yield-curve model between the data and our final model. When many
bond prices are available, this is only a small advantage, as accurate
zero-coupon yields can be recovered from the well-specified coupon-
bearing yield curve. When only a small number of bond prices are
available, our method provides a major advantage: one can fit a zero-
coupon yield curve to only two or three far-spaced coupon-bearing
yields, and indeed McCulloch and Kochin (1998) provide a proce-
dure for doing this, but there are limitless such curves that can be
fitted with no a priori correct criteria to choose between them.

The inability to pin down the yield curve is highlighted in
figure 5, which shows three yield curves—one piecewise constant,
one piecewise linear and starting from the current six-month annu-
alized inflation rate, and one following the method of McCulloch
and Kochin (1998)—all fitted to inflation-indexed bond yields on
two different dates. All curves fit the bond data perfectly, as would
any number of other curves, so there is nothing in the underlying
data to motivate a particular choice, yet different curves can differ by
as much as 1 percentage point. Our technique provides a method for
removing this intermediate curve-fitting step and estimating directly
with the underlying data instead of the output of an arbitrary yield-
curve model. The fact that we price bonds directly in terms of the
underlying inflation process also allows for direct modeling of the
lag involved in inflation indexation and the impact that historically
observed inflation has on current yields, a second major advantage.

In sum, the affine term structure model used in this paper
addresses a number of problems inherent in alternative approaches to
measuring inflation expectations, and produces plausible measures
of inflation expectations over the inflation targeting era. Given the
complexity of the model and the limited number of inflation-indexed
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Figure 5. Zero-Coupon Real Yield Curves
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bonds on issue, some caution should be applied in interpreting the
results. A key finding of the model is that long-term inflation expec-
tations appear to have been well anchored within the inflation tar-
get over most of the sample. Conversely, one-year-ahead inflation
expectations appear to be closely tied to CPI inflation and are more
variable than longer-term expectations. Given the relative stability
of our estimates of long-term inflation expectations, changes in five-
and ten-year inflation forward rates, and so in break-even inflation
rates, are by implication driven by changes in inflation risk premia.
As such, our measure has some benefits over break-even inflation
rates in measuring inflation expectations.

Appendix 1. Yields and Stochastic Discount Factors

The results of this paper revolve around the idea that inflation expec-
tations are an important determinant of the inflation yield. In this
section we make clear the relationships between real, nominal, and
inflation yields; inflation expectations; and inflation risk premia.
We also link these quantities to standard asset pricing models as
discussed, for example, in Cochrane (2005).
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Real and Nominal Yields and SDFs
Let M be the real SDF or pricing kernel, defined such that

MT
Pt,T =[E; ( ttT Tt 7') (8>
Myt

holds for any asset, where P, . is the price of the asset at time ¢
which has (a possibly random) payoff ;4 , occurring at time ¢ + 7.
A zero-coupon inflation-indexed bond maturing at time ¢ + 7, Py,
is an asset that pays one real dollar, or equivalently one unit of con-
sumption, for certain. That is, it is an asset with payoff x;, = 1.
If we define the real yield by y; . = —log(P/ ), we can use equation
(8) with z;, =1 to write

MI,
y;‘,r == log (Pti‘r) == log <]Et (15;«)) . (9)
t

This defines the relationship between real yields and the continuous-
time real SDF.

A zero-coupon nominal bond maturing at time ¢ 4+ 7 is an asset
that pays one nominal dollar for certain. If we define ); to be the
price index, then the payoff of this bond is given by x4, = Q¢/Qt++
units of consumption. Taking x¢4, = Q¢/Q¢++ in equation (8), we
can relate the nominal yield yi'; to the nominal bond price Py, and
the continuous-time real SDF by

M, Q ))
" — _log (P") =—log [E s .
yt,T g ( t,T) g < t < Mtr Qt—i-T

Motivated by this result, we define the continuous-time nominal
SDF by Mtn—f—T = {+T/Qt+7) so that

M
ot = —tog (Pr) = —1og (B (7)) 1o)
t

Inflation Yields and the Inflation SDF

The inflation yield is defined to be the difference in yields between
zero-coupon nominal and inflation-indexed bonds of the same
maturity,

ytiﬂ' = y:ffr - y:T' (11)

)
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As in Beechey (2008), we define the continuous-time inflation SDF,
M} ., such that the pricing equation for inflation yields holds—that

is, such that
3 Mti+7'

All formulations of M{, . which ensure that equations (9), (10), and
(11) are consistent with equation (12) are equivalent from the per-
spective of our model. One such formulation is to define the inflation
SDF as

) MPT
|V A p— 13
t+7 Et<Mtr+7—) ( )

We can then obtain equation (12) by substituting equations (9) and
(10) into equation (11) and using the definition of the inflation SDF
given in equation (13). In this case we have

) M?™ M
b <o () b ()
t t
M7 M M
Og(M? t(Et (MM)) Og( t< M)

as desired. If one assumed that M;, = and Q4. were uncorrelated,
a simpler formulation would be to take M{, = 1/Qy,. Since
M} . = M{, . /Qiir, in this case we would have E,(M} /M) =
Et(M[-i-T/M[)Et(Qt/Qt—FT)’ so that y?,lr - - IOg(Et(M{_’_T/M;)) -
log(E¢(Qt/Qi+r)) and y; - = yi'r — yi, = —log(E(Qt/Qu++7)) =
—log(E¢(M{,, /M})), as desired.

Interpretation of Other SDFs in Our Model

We model M} directly as dM}/M} = —ridt — )\i/dBt, where we take
7! as the instantaneous inflation rate and A as the market price of
inflation risk. Although very flexible, this setup means that in our
model the relationship between different stochastic discount factors
in the economy is not fixed.
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In models such as ours there are essentially three quantities of
interest, any two of which determine the other: the real SDF, the
nominal SDF, and the inflation SDF. As we make assumptions about
only one of these quantities, we do not tie down the model com-
pletely. Note that we could make an additional assumption to tie
down the model. Such an assumption would not affect the model-
implied inflation yields or inflation forecasts, however, which are the
only data our model sees and so, in the context of our model, would
be arbitrary.

This situation of model ambiguity is not confined to models of
inflation compensation such as ours. The extensive literature which
fits affine term structure models to nominal yields contains a simi-
lar kind of ambiguity. Such models typically take the nominal SDF
as driven by dM}*/M} = —rdt — X}'dB;, where once again the
real SDF and inflation process are not explicitly modeled, so that,
similar to our case, the model is not completely tied down.

Inflation Expectations and the Inflation Risk Premium

Finally, we link our inflation yield to inflation expectations and the
inflation risk premium. The inflation risk premium arises because
people who hold nominal bonds are exposed to inflation, which is
uncertain, and so demand compensation for bearing this risk. If we
set my , = log(M{, /M) and q; » = log(Q¢++/Q¢), which are both
assumed normal, and use the identity E;(exp(X)) = exp(E;(X) +
1V¢(X)) where X is normally distributed and V(-) is variance, we
can work from equation (11) to derive

» 1
ylzf,’l' =Ei(q,r) — §Vt(%,¢) + Covi(me,ry Gr,r)-
The first term above is the expectations component of the inflation
yield, while the last two terms constitute the inflation risk premium
(incorporating a “Jensen’s” or “convexity” term).

Appendix 2. The Mathematics of Our Model

We first give some general results regarding affine term structure
models, then relate these results to our specific model and its inter-
pretation.
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Some Results Regarding Affine Term Structure Models

Start with the latent factor process,
dXt = K(ﬂ — Xt)dt + X dBt

Given x;, we have, for s >t (see, for example, Duffie 2001, p. 342),

S S
xs = e K1) <Xt +/ eK(“t)Kp,du—i—/ K=ty dBu>

t t

Do Kls—ty, + (I —e K6y + e, (14)

¢

where ‘2’ denotes equality in distribution and €; s ~ N(0,Q5_)

with

Goe=e i (/ K- g5k (i) du) oK' (5-1)
t
s—t ,
:/ e—KUEE/e—Kudu'
0
Further, if we define
Tt = Po + pIXt7

then since j;tJrT s ds is normally distributed,

t+1
E; (exp (—/ T ds>>
t
t+1 1 t+1
= exp (—]Et </ T ds) + -V, (/ Ts ds>>
t 2 t
with

t+7 t+7
/ msds = / po + p'xsds
¢ t

t+7
:/ p0+pl (efK(sft)Xt + (I_efK(sft))“’
t

+e K(s—1) /S eK(“_t)EdBu> ds
t
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t4+1
:/ p0+p/(6_K(s_t)Xt+(I_e_K(S_t))u)dS
t
t+7 t+1
+/ o (/ e_K(s_t)ds> K=t dB,, (15)
t u

where we have used a stochastic version of Fubini’s theorem to
change the order of integration (see, for example, Da Prato and
Zabczyk 1993, p. 109). Evaluating the inner integral of line (15),
using [t6’s isometry (see, for example, Steele 2001, p. 82) and making
the change of variable s =t + 7 — u, we have

t+7 T
E,; </ Ty ds> = / po+p (e Ex + (I — e K pu)ds
¢ 0

t+7 T
\A </ 7r8d3> :/ (P (I —e KHK18)? ds,
t 0

2

where for x, a vector we define x?> = x'? as the vector dot-product

x'x. Hence
t+7 T
E, (exp (—/ s ds)) = exp <—/ ple K%, ds
t 0
T 1
- [ A - R ).

0

Now for M{ . = (I —e ®7)K~! we have
/ ple ixds = p'(I — e "K'y = p'M{ x4,

0

while

/ p(I—eBHuds=p'(rI+e K"K -~ K Y
0

=p'(T] - M{,)p
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T
/ fi(p/(lfe_Ks)K_lE)zds
0

1

= 5K </ (I — e K5)mx/(I - e—K’S)ds> K 'p
0

= —%p’Kfl(Tzz’ —SX'M,, — M E% + My )K~Vp,
where from Kim and Orphanides (2005), for example,
My, = /T e Kemyye K ds
0
— —vee (K@ 1)+ (I® K)) vec(e KTsxle K ™ _ v3)).

Putting this together, we have

B (e (- [ T 45)) =es(-ar - Bix) (10

ar =7po+p' (T — M, )p

with

1
— P KT EY — SX My - M S+ My VK~ Vp (17)
IBT = Mlﬂ'p' (18)

Equivalent formulas are available in Kim and Orphanides (2005).

Bond Price Formula
If we model the SDF according to
th/Mt = *ﬂ'tdt — A; dBt
T = po+ P'Xe, A = Ao+ Axy
dx; = K(p — x;)dt + ¥ dB, (19)

then the price of a zero-coupon bond at ¢ paying one dollar at ¢t + 7
is given by (see, for example, Cochrane 2005)
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Mt+7- t+T1 1 , t+7 ,
Et 7 e ]:Et eXp —/ Tt + §AtAt dt — / AtdBt
t t t
t+7
=E; <exp <—/ T ds>> , (20)
t

where 77 is like 7, in equation (19) above but with
dXt = K*<[,L* — Xt)dt + by dBt,

where K* = (K +$A) and p* = K* (K p — $g). (Here 77 is the
“risk-neutral” version of 74.) Hence we can price bonds via equation
(16) using K* and p* in place of K and p in equations (17) and
(18). We can write equation (20) as

t+1
exp(—ai — Bi'x;) = Ey <exp (—/ T ds)) .
t

In terms of the inflation yield from equation (12), this can be written
as ylr = o+ A%,

Inflation Forecast Formula

Inflation expectations are reported in terms of percentage growth in
the consumer price index, not average inflation (the two differ by
a Jensen’s inequality term). As such, expectations at time ¢ of how
the CPI will grow between time s > ¢ and time s + 7 in the future
correspond to a term of the form

£ (e ([ s av)) =5 (& (e (- [ R a)))

= Et(eXp<—0_47. - B;—Xs))

=/

1- _
= exp <—Oé7- - IBT(e_K(S_t)Xt + (I - e_K(S_t))IJ‘) + Qﬁ;QStﬁT>)

where the last line follows since x,|x; ~ N(e KG=Yx, 4 (I —
e K6, Q,_,). Here @, and B_ are equivalent to o, and 8.
from equations (17) and (18) but with the market price or risk A;
set to zero and using —pg and —p in place of py and p. So if the CPI
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is expected to grow by 3 percent between s and s + 7, for example,
we would have

Tlog(1+3%) = —a, — B (e KGVx, + (I — e KE=D) )

1. _
+ 5:8;-95—15137'

Appendix 3. Central Difference Kalman Filter

The central difference Kalman filter is a type of sigma-point fil-
ter. Sigma-point filters deal with non-linearities in the following
manner:

e First, a set of points around the forecast of the state is gener-
ated. The distribution of these points depends on the variance
of the forecast of the state.

e The measurement equations (functions H1(x;) and H2(x;))
are used to calculate a set of forecast observation points. This
set of points is used to estimate a mean and variance of the
data forecasts.

e The mean and variance of the data forecasts are then used to
update the estimates of the state and its variance.

The algorithm we use is that of an additive-noise central differ-
ence Kalman filter, the details of which are given below. For more
details on sigma-point Kalman filters, see van der Merwe (2004).

e Step 1. Initialize the state vector and its covariance matrix to
their unconditional expected values,
%0 = [0,0,0]
Py, = Q.
e Step 2. Loop over k = 1 : n, where n is the length of our data

set.
e Step 2a. Time-update equations:
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where dj, is the time in years between data point k and data
point k£ — 1.
Step 2b. Create the sigma points,

where (1/ Px, )i is the ith column of the matrix square root of
Py, , L is the number of latent factors, and h is the central
difference step size, which is set to v/3.

Step 2c. Propagate the sigma points through the pricing func-
tions H1(-) and H2(-). Let my be the number of observed
inflation-indexed bond prices in period k. Let np be the
number of observed inflation forecasts in period k. For each
observed price j = 1,...,m; we propagate each sigma point
Xi i = 0,...,2L through the pricing function for bond
j in period k, H1y (). For each observed forecast j =
mg + 1,...,mp + np we propagate each sigma point X};,
t = 0,...,2L through the pricing function for forecast j in
period k, H2j, ;(-). Denote the output by ¢y, which is a matrix
of dimension ny + my by 2L + 1 with elements

( )_ H]-k:,j(Xi) i:O,...,QL, j:].,...,mk
PRI T \H2, (X)) i=0,...,2L, j=mp+1,... mptng.

Denote the ith column of ¢y by ¢t .
Step 2d. Observation-update equations. For weightings of

2
my _h"—L gy 1 ,
W= T Wi T g izl
(e1) _ 1 (Cz)_h2_1 .
D TER A

the estimate of the price vector is given by a weighted average
of the ¢y s,
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2L
i = wei,
i=0
and the estimated covariance matrix of y; is given by

(01) Soﬁ—m‘)[?} +wz(62)(90’]i€ +¢L+z [2]]

IIMh

2‘Pk)

+Rka

where Ry is the covariance matrix of the noise present in the
observed prices. Here (-)?I denotes the vector outer product.

Next the estimate of the covariance between the state estimate
and the price estimate is given by

1 . T
kayk _ / (c )ka [90 1:L ¢£+1.2L] ]

e Step 2e. Calculate the Kalman gain matrix Gy,

Gp =P P!

XkYET Vi

o Step 2f. Update the state estimates,

Xp =X, + Gre(yr — Yr)
Py, = Py, — Gy Py, G,

where y}, is the vector of observed prices.
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